Derivative learning of tensorial quantities-Predicting finite temperature infrared spectra from first principles

被引:4
作者
Schmiedmayer, Bernhard [1 ,2 ]
Kresse, Georg [1 ,2 ,3 ]
机构
[1] Univ Vienna, Fac Phys, Kolingasse 14-16, A-1090 Vienna, Austria
[2] Univ Vienna, Ctr Computat Mat Sci, Kolingasse 14-16, A-1090 Vienna, Austria
[3] VASP Software GmbH, Sensengasse 8, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
TOTAL-ENERGY CALCULATIONS; MOLECULAR-DYNAMICS; LIQUID WATER; DIELECTRIC-CONSTANT; PHASE-TRANSITIONS; POLARIZATION; SPECTROSCOPY; DENSITY;
D O I
10.1063/5.0217243
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We develop a strategy that integrates machine learning and first-principles calculations to achieve technically accurate predictions of infrared spectra. In particular, the methodology allows one to predict infrared spectra for complex systems at finite temperatures. The method's effectiveness is demonstrated in challenging scenarios, such as the analysis of water and the organic-inorganic halide perovskite MAPbI3, where our results consistently align with experimental data. A distinctive feature of the methodology is the incorporation of derivative learning, which proves indispensable for obtaining accurate polarization data in bulk materials and facilitates the training of a machine learning surrogate model of the polarization adapted to rotational and translational symmetries. We achieve polarization prediction accuracies of about 1% for the water dimer by training only on the predicted Born effective charges.
引用
收藏
页数:10
相关论文
共 90 条
[1]  
Allen MP, 2017, COMPUTER SIMULATION
[2]   IR and Raman spectra of liquid water: Theory and interpretation [J].
Auer, B. M. ;
Skinner, J. L. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (22)
[3]   Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications [J].
Baikie, Tom ;
Fang, Yanan ;
Kadro, Jeannette M. ;
Schreyer, Martin ;
Wei, Fengxia ;
Mhaisalkar, Subodh G. ;
Graetzel, Michael ;
White, Tim J. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (18) :5628-5641
[4]   A MOLECULAR-DYNAMICS STUDY OF THE OH STRETCHING VIBRATIONAL-SPECTRUM OF LIQUID WATER [J].
BANSIL, R ;
BERGER, T ;
TOUKAN, K ;
RICCI, MA ;
CHEN, SH .
CHEMICAL PHYSICS LETTERS, 1986, 132 (02) :165-172
[5]   ABINITIO CALCULATION OF THE MACROSCOPIC DIELECTRIC-CONSTANT IN SILICON [J].
BARONI, S ;
RESTA, R .
PHYSICAL REVIEW B, 1986, 33 (10) :7017-7021
[6]   Infrared spectroscopy of proteins [J].
Barth, Andreas .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2007, 1767 (09) :1073-1101
[7]   Machine Learning a General-Purpose Interatomic Potential for Silicon [J].
Bartok, Albert P. ;
Kermode, James ;
Bernstein, Noam ;
Csanyi, Gabor .
PHYSICAL REVIEW X, 2018, 8 (04)
[8]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[9]  
Batatia I, 2022, ADV NEUR IN
[10]   E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials [J].
Batzner, Simon ;
Musaelian, Albert ;
Sun, Lixin ;
Geiger, Mario ;
Mailoa, Jonathan P. ;
Kornbluth, Mordechai ;
Molinari, Nicola ;
Smidt, Tess E. ;
Kozinsky, Boris .
NATURE COMMUNICATIONS, 2022, 13 (01)