Metabolic Engineering of Escherichia coli for Production of a Bioactive Metabolite of Bilirubin

被引:2
|
作者
Chen, Huaxin [1 ]
Xiong, Peng [1 ]
Guo, Ning [1 ]
Liu, Zhe [1 ]
机构
[1] Shandong Univ Technol, Sch Life Sci & Med, Zibo 255049, Peoples R China
关键词
bilirubin; biliverdin; Escherichia coli; heme; BIOSYNTHESIS; PROTEIN; DESIGN;
D O I
10.3390/ijms25179741
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bilirubin (BR) is an important ingredient of a valuable Chinese medicine, Calculus bovis. Over recent decades, increasing evidence has confirmed that BR offers health benefits in cardiovascular health, stroke, diabetes, and metabolic syndrome. However, BR is mainly produced by extraction from pig bile. In this study, we assembled an efficient pathway for BR production by metabolic engineering of Escherichia coli. First, heme oxygenase (HO1) and biliverdin reductase were co-expressed in E. coli. HPLC and LC-MS confirmed the accumulation of BR in the recombinant E. coli cells. To improve BR production, the catalytic abilities of HO1 from different species were investigated. In addition, the outermembrane-bound heme receptor (ChuA) and the enzymes involved in heme biosynthesis were overexpressed among which ChuA, 5-aminolevulinic acid dehydratase (HemB), protoporphyrin oxidase (HemG), and ferrochelatase (HemH) were found to enhance BR accumulation in E. coli. In addition, expression of ferredoxin (Fd) was shown to contribute to efficient conversion of heme to BR in E. coli. To increase supply of NADPH, isocitrate dehydrogenase (IDH), NAD kinase (nadK), NADP-specific glutamate dehydrogenase (gdhA), and glucose-6-phosphate 1-dehydrogenase (ZWF) were overexpressed and were found to enhance BR accumulation when these proteins were expressed with a low-copy plasmid pACYCduet-1. Modular optimization of the committed genes led to a titer of 17.2 mg/L in strain M1BHG. Finally, fed-batch fermentation was performed for the strains M1BHG and M1, resulting in accumulation of 75.5 mg/L and 25.8 mg/L of BR, respectively. This is the first report on biosynthesis of BR through metabolic engineering in a heterologous host.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Metabolic engineering of Escherichia coli for the production of isobutanol: a review
    Gu, Pengfei
    Liu, Liwen
    Ma, Qianqian
    Dong, Zilong
    Wang, Qiang
    Xu, Jie
    Huang, Zhaosong
    Li, Qiang
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2021, 37 (10)
  • [2] Metabolic engineering of Escherichia coli for the production of isoprenoids
    Ward, Valerie C. A.
    Chatzivasileiou, Alkiviadis O.
    Stephanopoulos, Gregory
    FEMS MICROBIOLOGY LETTERS, 2018, 365 (10)
  • [3] Metabolic engineering of Escherichia coli for agmatine production
    Xu, Daqing
    Zhang, Lirong
    ENGINEERING IN LIFE SCIENCES, 2019, 19 (01): : 13 - 20
  • [4] Efficient production of guanosine in Escherichia coli by combinatorial metabolic engineering
    Zhang, Kun
    Qin, Mengxing
    Hou, Yu
    Zhang, Wenwen
    Wang, Zhenyu
    Wang, Hailei
    MICROBIAL CELL FACTORIES, 2024, 23 (01)
  • [5] Metabolic engineering of Escherichia coli for the production of neryl acetate
    Zong, Zhen
    Zhang, Suping
    Zhen, Menglin
    Xu, Ning
    Li, Dongsheng
    Wang, Chao
    Gao, Bing
    Hua, Qiang
    Liu, Zhijie
    BIOCHEMICAL ENGINEERING JOURNAL, 2020, 161
  • [6] Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli
    Ning, Yike
    Wu, Xuejiao
    Zhang, Chenglin
    Xu, Qingyang
    Chen, Ning
    Xie, Xixian
    METABOLIC ENGINEERING, 2016, 36 : 10 - 18
  • [7] Metabolic engineering of Escherichia coli for production of valerenadiene
    Nybo, S. Eric
    Saunders, Jacqueline
    McCormick, Sean P.
    JOURNAL OF BIOTECHNOLOGY, 2017, 262 : 60 - 66
  • [8] Metabolic engineering of Escherichia coli for the production of cinnamaldehyde
    Bang, Hyun Bae
    Lee, Yoon Hyeok
    Kim, Sun Chang
    Sung, Chang Keun
    Jeong, Ki Jun
    MICROBIAL CELL FACTORIES, 2016, 15
  • [9] Metabolic engineering of Escherichia coli for the production of riboflavin
    Lin, Zhenquan
    Xu, Zhibo
    Li, Yifan
    Wang, Zhiwen
    Chen, Tao
    Zhao, Xueming
    MICROBIAL CELL FACTORIES, 2014, 13
  • [10] Metabolic engineering of itaconate production in Escherichia coli
    Vuoristo, Kiira S.
    Mars, Astrid E.
    Sangra, Jose Vidal
    Springer, Jan
    Eggink, Gerrit
    Sanders, Johan P. M.
    Weusthuis, Ruud A.
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (01) : 221 - 228