Structural basis of RfaH-mediated transcription-translation coupling

被引:1
|
作者
Molodtsov, Vadim [1 ,2 ,7 ]
Wang, Chengyuan [1 ,2 ,3 ]
Zhang, Jing [3 ]
Kaelber, Jason T. [4 ,5 ]
Blaha, Gregor [6 ]
Ebright, Richard H. [1 ,2 ]
机构
[1] Rutgers State Univ, Waksman Inst, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA
[3] Chinese Acad Sci, Shanghai Inst Immun & Infect, Ctr Microbes Dev & Hlth, Shanghai, Peoples R China
[4] Rutgers State Univ, Rutgers CryoEM & Nanoimaging Facil, Piscataway, NJ USA
[5] Rutgers State Univ, Inst Quantitat Biomed, Piscataway, NJ USA
[6] Univ Calif Riverside, Dept Biochem, Riverside, CA USA
[7] Res Inst Syst Biol & Med, Moscow, Russia
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
RNA-POLYMERASE; ESCHERICHIA-COLI; RIBOSOME; COMPLEX; VISUALIZATION; TERMINATION; MECHANISMS; SUBUNIT; HEAD;
D O I
10.1038/s41594-024-01372-w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The NusG paralog RfaH mediates bacterial transcription-translation coupling in genes that contain a DNA sequence element, termed an ops site, required for pausing RNA polymerase (RNAP) and for loading RfaH onto the paused RNAP. Here, we report cryo-electron microscopy structures of transcription-translation complexes (TTCs) containing Escherichia coli RfaH. The results show that RfaH bridges RNAP and the ribosome, with the RfaH N-terminal domain interacting with RNAP and the RfaH C-terminal domain interacting with the ribosome. The results show that the distribution of translational and orientational positions of RNAP relative to the ribosome in RfaH-coupled TTCs is more restricted than in NusG-coupled TTCs because of the more restricted flexibility of the RfaH interdomain linker. The results further suggest that the structural organization of RfaH-coupled TTCs in the 'loading state', in which RNAP and RfaH are located at the ops site during formation of the TTC, is the same as the structural organization of RfaH-coupled TTCs in the 'loaded state', in which RNAP and RfaH are located at positions downstream of the ops site during function of the TTC. The results define the structural organization of RfaH-containing TTCs and set the stage for analysis of functions of RfaH during translation initiation and transcription-translation coupling. Here, the authors report cryo-electron microscopy structures of Escherichia coli transcription-translation complexes containing the transcription-translation coupling factor RfaH, showing that RfaH physically bridges RNA polymerase and the ribosome.
引用
收藏
页码:1932 / 1941
页数:29
相关论文
共 50 条
  • [1] Structural basis of transcription-translation coupling
    Wang, Chengyuan
    Molodtsov, Vadim
    Firlar, Emre
    Kaelber, Jason T.
    Blaha, Gregor
    Su, Min
    Ebright, Richard H.
    SCIENCE, 2020, 369 (6509) : 1359 - +
  • [2] Structural basis of transcription-translation coupling and collision in bacteria
    Webster, Michael William
    Takacs, Maria
    Zhu, Chengjin
    Vidmar, Vita
    Eduljee, Ayesha
    Abdelkareem, Mo'men
    Weixlbaumer, Albert
    SCIENCE, 2020, 369 (6509) : 1355 - +
  • [3] Transcription-Translation Coupling in Bacteria
    Blaha, Gregor M.
    Wade, Joseph T.
    ANNUAL REVIEW OF GENETICS, 2022, 56 : 187 - 205
  • [4] Mechanisms of Transcription-translation Coupling in Escherichia coli
    Shen Chong-Jie
    Morigen
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2024, 51 (03) : 515 - 524
  • [5] Macromolecular assemblies supporting transcription-translation coupling
    Webster, Michael W.
    Weixlbaumer, Albert
    TRANSCRIPTION-AUSTIN, 2021, 12 (04): : 103 - 125
  • [6] Tracking transcription-translation coupling in real time
    Qureshi, Nusrat Shahin
    Duss, Olivier
    NATURE, 2025, 637 (8045) : 487 - +
  • [7] In vitro experimental system for analysis of transcription-translation coupling
    Castro-Roa, Daniel
    Zenkin, Nikolay
    NUCLEIC ACIDS RESEARCH, 2012, 40 (06)
  • [8] Indirect Bacterial Transcription-Translation Coupling Mechanism Revealed by In Situ Integrative Structural Biology
    Xue, Liang
    O'Reilly, Francis
    Sinn, Ludwig
    Rappsilber, Juri
    Mahamid, Julia
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 486A - 486A
  • [9] Real-time tracking of transcription-translation coupling
    Qureshi, Nusrat
    Duss, Olivier
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 488A - 488A
  • [10] Transcription-translation coupling: Recent advances and future perspectives
    Woodgate, Jason
    Zenkin, Nikolay
    MOLECULAR MICROBIOLOGY, 2023, 120 (04) : 539 - 546