Evaluating the selectivity of CO2 reduction reaction on elementary metal particles with DFT calculations

被引:0
作者
Wang, Qiang [1 ,2 ,3 ]
Li, Jiarong [1 ]
Liu, Yi [1 ]
Su, Peixian [1 ]
Zhou, Zhaohui [1 ,2 ,3 ]
机构
[1] Changan Univ, Sch Water & Environm, Dept Chem Engn, Xian 710064, Peoples R China
[2] Changan Univ, Key Lab Subsurface Hydrol & Ecol Effect Arid Reg, Minist Educ, Xian 710064, Peoples R China
[3] Changan Univ, Key Lab Ecohydrol & Water Secur Arid & Semiarid Re, Minist Water Resources, Xian 710064, Peoples R China
关键词
CO; 2; RR; Metal particles; DFT calculations; Product selectivity; TOTAL-ENERGY CALCULATIONS; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; FORMIC-ACID; CATALYTIC CONVERSION; PRODUCT SELECTIVITY; FORMATE; ELECTROREDUCTION; HYDROGENATION; MECHANISM;
D O I
10.1016/j.surfin.2024.104866
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrocatalytic CO2 reduction reaction (CO2RR) towards two-electron products is a competent technique to convert renewable electricity into chemical energy at ambient conditions. Poly-crystalline metals are well-known electrocatalysts for CO2RR. However, no theoretical research was reported to date that evaluates the selectivity of two-electron CO2RR on metal particles. In this work, we proposed a paradigm to evaluate the product selectivity of CO2RR on metal particles. The product selectivity on three low-index surfaces of six metals (In, Pb, Ag, Au, Ni, and Pt) was firstly determined based on the detailed reaction mechanisms established for CO2RR to products of HCOOH and CO. Then, the product selectivity of CO2RR on the first four metal particles was evaluated using the effective free energy barrier which accounts for the facet dependence of CO2RR on the metal particles. The computational results well rationalize the experimental observations, namely preference of HCOOH to CO on the In and Pb particles with higher HCOOH selectivity on the Pb particle, while CO preferred to HCOOH on the Ag and Au particles with higher CO selectivity on the Au particle.
引用
收藏
页数:11
相关论文
共 78 条
[1]   Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes [J].
Alvarez, Andrea ;
Bansode, Atul ;
Urakawa, Atsushi ;
Bavykina, Anastasiya V. ;
Wezendonk, Tim A. ;
Makkee, Michiel ;
Gascon, Jorge ;
Kapteijn, Freek .
CHEMICAL REVIEWS, 2017, 117 (14) :9804-9838
[2]   On the mechanism of high product selectivity for HCOOH using Pb in CO2 electroreduction [J].
Back, Seoin ;
Kim, Jun-Hyuk ;
Kim, Yong-Tae ;
Jung, Yousung .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (14) :9652-9657
[3]   Active Sites of Au and Ag Nanoparticle Catalysts for CO2 Electroreduction to CO [J].
Back, Seoin ;
Yeom, Min Sun ;
Jung, Yousung .
ACS CATALYSIS, 2015, 5 (09) :5089-5096
[4]   Electrochemical CO2 Reduction: A Classification Problem [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
CHEMPHYSCHEM, 2017, 18 (22) :3266-3273
[5]   Electric Field Effects in Electrochemical CO2 Reduction [J].
Chen, Leanne D. ;
Urushihara, Makoto ;
Chan, Karen ;
Norskov, Jens K. .
ACS CATALYSIS, 2016, 6 (10) :7133-7139
[6]   Selectivity of Electrochemical CO2 Reduction on Metal Electrodes: The Role of the Surface Oxidized Layer [J].
Chen, Xingzhu ;
Cavallo, Luigi ;
Huang, Kuo-Wei .
ACS CATALYSIS, 2023, 13 (19) :13089-13100
[7]   On the origin of the elusive first intermediate of CO2 electroreduction [J].
Chernyshova, Irina, V ;
Somasundaran, Ponisseril ;
Ponnurangam, Sathish .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (40) :E9261-E9270
[8]   Identifying systematic DFT errors in catalytic reactions [J].
Christensen, Rune ;
Hansen, Heine A. ;
Vegge, Tejs .
CATALYSIS SCIENCE & TECHNOLOGY, 2015, 5 (11) :4946-4949
[9]   Modeling Operando Electrochemical CO2 Reduction [J].
Dattila, Federico ;
Seemakurthi, Ranga Rohit ;
Zhou, Yecheng ;
Lopez, Nuria .
CHEMICAL REVIEWS, 2022, 122 (12) :11085-11130
[10]   Breaking the Limit of Size-Dependent CO2RR Selectivity in Silver Nanoparticle Electrocatalysts through Electronic Metal-Carbon Interactions [J].
Deng, Xingyi ;
Alfonso, Dominic ;
Nguyen-Phan, Thuy-Duong ;
Kauffman, Douglas R. .
ACS CATALYSIS, 2023, 13 (23) :15301-15309