Few-Shot Learning in Wi-Fi-Based Indoor Positioning

被引:0
作者
Xie, Feng [1 ]
Lam, Soi Hoi [2 ]
Xie, Ming [3 ]
Wang, Cheng [1 ]
机构
[1] Sanda Univ, Sch Informat Sci & Technol, Shanghai 201209, Peoples R China
[2] Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
[3] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
关键词
few-shot learning; indoor positioning; meta-learning; cosine similarity; limited labeled data; few-sample learning;
D O I
10.3390/biomimetics9090551
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper explores the use of few-shot learning in Wi-Fi-based indoor positioning, utilizing convolutional neural networks (CNNs) combined with meta-learning techniques to enhance the accuracy and efficiency of positioning systems. The focus is on addressing the challenge of limited labeled data, a prevalent issue in extensive indoor environments. The study explores various scenarios, comparing the performance of the base CNN and meta-learning models. The meta-learning approach involves few-shot learning tasks, such as three-way N-shot, five-way N-shot, etc., to enhance the model's ability to generalize from limited data. The experiments were conducted across various scenarios, evaluating the performance of the models with different numbers of samples per class (K) after filtering by cosine similarity (FCS) during both the stages of data preprocessing and meta-learning. The scenarios included both base classes and novel classes, with and without meta-learning. The results indicated that the base CNN model achieved varying accuracy levels depending on the scenario and the number of samples per class retained after FCS. Meta-learning performed acceptably in scenarios with fewer samples, which are the distinct datasets pertaining to novel classes. With 20 samples per class, the base CNN achieved an accuracy of 0.80 during the pre-training stage, while meta-learning (three-way one-shot) achieved an accuracy of 0.78 on a new small dataset with novel classes.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Few-shot learning for ear recognition
    Zhang, Jie
    Yu, Wen
    Yang, Xudong
    Deng, Fang
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO AND SIGNAL PROCESSING (IVSP 2019), 2019, : 50 - 54
  • [22] Few-Shot Classification with Contrastive Learning
    Yang, Zhanyuan
    Wang, Jinghua
    Zhu, Yingying
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 293 - 309
  • [23] Prototype Reinforcement for Few-Shot Learning
    Xu, Liheng
    Xie, Qian
    Jiang, Baoqing
    Zhang, Jiashuo
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4912 - 4916
  • [24] An Applicative Survey on Few-shot Learning
    Zhang J.
    Zhang X.
    Lv L.
    Di Y.
    Chen W.
    Recent Patents on Engineering, 2022, 16 (05) : 104 - 124
  • [25] Secure collaborative few-shot learning
    Xie, Yu
    Wang, Han
    Yu, Bin
    Zhang, Chen
    KNOWLEDGE-BASED SYSTEMS, 2020, 203
  • [26] Universal Steganalysis Based on Few-shot Learning
    Li D.-Q.
    Fu Z.-J.
    Cheng X.
    Song C.
    Sun X.-M.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (10): : 3874 - 3890
  • [27] Few-Shot Learning on Graph Convolutional Network Based on Meta learning
    Liu X.-L.
    Feng L.
    Liao L.-X.
    Gong X.
    Su H.
    Wang J.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (03): : 885 - 897
  • [28] Heterogeneous Transfer Learning for Wi-Fi Indoor Positioning Based Hybrid Feature Selection
    Gidey, Hailu Tesfay
    Guo, Xiansheng
    Li, Lin
    Zhang, Yukun
    SENSORS, 2022, 22 (15)
  • [29] Wi-Fi-Based Location-Independent Human Activity Recognition via Meta Learning
    Ding, Xue
    Jiang, Ting
    Zhong, Yi
    Huang, Yan
    Li, Zhiwei
    SENSORS, 2021, 21 (08)
  • [30] Imbalanced Few-Shot Learning Based on Meta-transfer Learning
    Chu, Yan
    Sun, Xianghui
    Jiang Songhao
    Xie, Tianwen
    Wang, Zhengkui
    Shan, Wen
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VIII, 2023, 14261 : 357 - 369