Interfacial and Vacancy Engineering on 3D-Interlocked Anode Catalyst Layer for Achieving Ultralow Voltage in Anion Exchange Membrane Water Electrolyzer

被引:3
作者
Wan, Lei [1 ]
Lin, Dongcheng [1 ]
Liu, Jing [1 ]
Xu, Ziang [1 ]
Xu, Qin [1 ]
Zhen, Yihan [1 ]
Pang, Maobin [1 ]
Wang, Baoguo [1 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
oxygen evolution reaction; interfacial engineering; vacancy engineering; membrane electrode assembly; anion exchange membrane waterelectrolysis; OXYGEN EVOLUTION; HIGH-PERFORMANCE; HYDROGEN-PRODUCTION; ACTIVE-SITE; NANOPARTICLES;
D O I
10.1021/acsnano.4c03668
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing a high-efficiency and stable anode catalyst layer (CL) is crucial for promoting the practical applications of anion exchange membrane (AEM) water electrolyzers. Herein, a hierarchical nanosheet array composed of oxygen vacancy-enriched CoCrOx nanosheets and dispersed FeNi layered double hydroxide (LDH) is proposed to regulate the electronic structure and increase the electrical conductivity for improving the intrinsic activity of the oxygen evolution reaction (OER). The CoCrOx/NiFe LDH electrodes require an overpotential of 205 mV to achieve a current density of 100 mA cm(-2), and they exhibit long-term stability at 1000 mA cm(-2) over 7000 h. Notably, a breakthrough strategy is introduced in membrane electrode assembly (MEA) fabrication by transferring CoCrOx/NiFe LDH to the surface of an AEM, forming a 3D-interlocked anode CL, significantly reducing the overall cell resistance and enhancing the liquid/gas mass transfer. In AEM water electrolysis, it exhibits an ultralow cell voltage of 1.55 V-cell to achieve a current density of 1.0 A cm(-2) in 1 M KOH, outperforming the state-of-the-art Pt/C//IrO2. This work provides a valuable approach to designing high-efficiency electrocatalysts at the single-cell level for advanced alkaline water electrolysis technologies.
引用
收藏
页码:22901 / 22916
页数:16
相关论文
共 74 条
[1]   Comb and Bottlebrush Polymers with Superior Rheological and Mechanical Properties [J].
Abbasi, Mahdi ;
Faust, Lorenz ;
Wilhelm, Manfred .
ADVANCED MATERIALS, 2019, 31 (26)
[2]   Poly(carbazole)-based anion-conducting materials with high performance and durability for energy conversion devices [J].
Cha, Min Suc ;
Park, Ji Eun ;
Kim, Sungjun ;
Han, Seung-Hui ;
Shin, Sang-Hun ;
Yang, Seok Hwan ;
Kim, Tae-Ho ;
Yu, Duk Man ;
So, Soonyong ;
Hong, Young Taik ;
Yoon, Sang Jun ;
Oh, Seong-Geun ;
Kang, Sun Young ;
Kim, Ok-Hee ;
Park, Hyun S. ;
Bae, Byungchan ;
Sung, Yung-Eun ;
Cho, Yong-Hun ;
Lee, Jang Yong .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3633-3645
[3]   Effect of the interfacial electronic coupling of nickel-iron sulfide nanosheets with layer Ti3C2 MXenes as efficient bifunctional electrocatalysts for anion-exchange membrane water electrolysis [J].
Chanda, Debabrata ;
Kannan, Karthik ;
Gautam, Jagadis ;
Meshesha, Mikiyas Mekete ;
Jang, Seok Gwon ;
Dinh, Van An ;
Yang, Bee Lyong .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 321
[4]   Hybrid perovskites as oxygen evolution electrocatalysts for high-performance anion exchange membrane water electrolyzers [J].
Chen, Di ;
Park, Yoo Sei ;
Liu, Fan ;
Fang, Liyang ;
Duan, Chuancheng .
CHEMICAL ENGINEERING JOURNAL, 2023, 452
[5]   High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A cm-2 and a durability of 1000 hours [J].
Chen, Nanjun ;
Paek, Sae Yane ;
Lee, Ju Yeon ;
Park, Jong Hyeong ;
Lee, So Young ;
Lee, Young Moo .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (12) :6338-6348
[6]   High-Efficiency Anion Exchange Membrane Water Electrolysis Employing Non-Noble Metal Catalysts [J].
Chen, Pengzuo ;
Hu, Xile .
ADVANCED ENERGY MATERIALS, 2020, 10 (39)
[7]   Piperidinium-functionalized anion exchange membranes and their application in alkaline fuel cells and water electrolysis [J].
Chu, Xiaomeng ;
Shi, Yan ;
Liu, Lei ;
Huang, Yingda ;
Li, Nanwen .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (13) :7717-7727
[8]   CoCr2O4 nanospheres for low temperature methane oxidation [J].
Dai, Yiling ;
Wang, Haiyan ;
Liu, Shida ;
Smith, Kevin J. ;
Wolf, Michael O. ;
MacLachlan, Mark J. .
CRYSTENGCOMM, 2020, 22 (26) :4404-4415
[9]   High-performance alkaline water electrolysis using Aemion™ anion exchange membranes [J].
Fortin, Patrick ;
Khoza, Thulile ;
Cao, Xinzhi ;
Martinsen, Stig Yngve ;
Barnett, Alejandro Oyarce ;
Holdcroft, Steven .
JOURNAL OF POWER SOURCES, 2020, 451
[10]   Amorphous nanomaterials in electrocatalytic water splitting [J].
Guo, Chengying ;
Shi, Yanmei ;
Lu, Siyu ;
Yu, Yifu ;
Zhang, Bin .
CHINESE JOURNAL OF CATALYSIS, 2021, 42 (08) :1287-1296