IGE-LIO: Intensity Gradient Enhanced Tightly Coupled LiDAR-Inertial Odometry

被引:1
|
作者
Chen, Ziyu [1 ]
Zhu, Hui [2 ]
Yu, Biao [2 ]
Jiang, Chunmao [1 ]
Hua, Chen [1 ]
Fu, Xuhui [1 ]
Kuang, Xinkai [1 ]
机构
[1] Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China
[2] Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China
关键词
Laser radar; Feature extraction; Simultaneous localization and mapping; Noise; Accuracy; Location awareness; Data mining; Degenerated environments; intensity gradient; localization; simultaneous localization and mapping (SLAM); weighting function; ROBUST;
D O I
10.1109/TIM.2024.3427795
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Simultaneous localization and mapping (SLAM) plays an important role in the state estimation of mobile robots. Most popular LiDAR SLAM (L-SLAM) methods extract feature points only from the geometric structure of the environment, which can result in inaccurate localization in degenerated scenarios. In this article, we present a novel framework for LiDAR intensity gradient enhanced tightly coupled LiDAR-inertial odometry (IGE-LIO). The framework proposes a novel LiDAR intensity gradient-based feature extraction approach for accurate pose estimation, overcoming the challenges faced by L-SLAM in degenerated environments. After computing the intensity gradient of each LiDAR point, we dynamically extract intensity edge points (IEPs) from texture information. In addition, we extract geometric planar points (GPPs) and geometric edge points (GEPs) based on geometric information. Then, the error analysis is performed on each type of feature points, and the weighting functions are designed to correct measurement noise and mitigate biases introduced by the additional uncertainty in feature extraction. Subsequently, an iterative extended Kalman filter (IEKF) framework is constructed by combining residuals from point-to-plane and point-to-edge associations. Finally, extensive experiments are conducted in indoor, outdoor, and LiDAR degenerated scenarios. The results demonstrate the significantly improved robustness and accuracy of our proposed method compared with the existing geometric-only methods, especially in LiDAR degenerated scenarios.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] An Intensity-Augmented LiDAR-Inertial SLAM for Solid-State LiDARs in Degenerated Environments
    Li, Haisong
    Tian, Bailing
    Shen, Hongming
    Lu, Junjie
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [42] TransFusionOdom: Transformer-Based LiDAR-Inertial Fusion Odometry Estimation
    Sun, Leyuan
    Ding, Guanqun
    Qiu, Yue
    Yoshiyasu, Yusuke
    Kanehiro, Fumio
    IEEE SENSORS JOURNAL, 2023, 23 (18) : 22064 - 22079
  • [43] CLID-SLAM: A Coupled LiDAR-Inertial Neural Implicit Dense SLAM With Region-Specific SDF Estimation
    Jiang, Junlong
    Zhang, Xuetao
    Sun, Gang
    Liu, Yisha
    Zhang, Xuebo
    Zhuang, Yan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (04): : 3310 - 3317
  • [44] A Tightly-Coupled and Keyframe-Based Visual-Inertial-Lidar Odometry System for UGVs With Adaptive Sensor Reliability Evaluation
    Yin, Jun
    Zhuang, Yan
    Yan, Fei
    Liu, Yan-Jun
    Zhang, Hong
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (08): : 4976 - 4985
  • [45] A High-Precision LiDAR-Inertial Odometry via Invariant Extended Kalman Filtering and Efficient Surfel Mapping
    Zhang, Houzhan
    Xiao, Rong
    Li, Jiaxin
    Yan, Chuangye
    Tang, Huajin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 11
  • [46] R-LIOM: Reflectivity-Aware LiDAR-Inertial Odometry and Mapping
    Dong, Yanchao
    Li, Lingxiao
    Xu, Sixiong
    Li, Wenxuan
    Li, Jinsong
    Zhang, Yahe
    He, Bin
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (11) : 7743 - 7750
  • [47] LIO-Fusion: Reinforced LiDAR Inertial Odometry by Effective Fusion With GNSS/Relocalization and Wheel Odometry
    Wu, Wenhong
    Zhong, Xunyu
    Wu, Dongjie
    Chen, Bushi
    Zhong, Xungao
    Liu, Qiang
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (03) : 1571 - 1578
  • [48] SLICT: Multi-Input Multi-Scale Surfel-Based Lidar-Inertial Continuous-Time Odometry and Mapping
    Nguyen, Thien-Minh
    Duberg, Daniel
    Jensfelt, Patric
    Yuan, Shenghai
    Xie, Lihua
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (04) : 2102 - 2109
  • [49] VE-LIOM: A Versatile and Efficient LiDAR-Inertial Odometry and Mapping System
    Gao, Yuhang
    Zhao, Long
    REMOTE SENSING, 2024, 16 (15)
  • [50] A ZUPT Aided Initialization Procedure for Tightly-coupled Lidar Inertial Odometry based SLAM System
    Gui, Linqiu
    Zeng, Chunnian
    Dauchert, Samuel
    Luo, Jie
    Wang, Xiaofeng
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2023, 108 (03)