IGE-LIO: Intensity Gradient Enhanced Tightly Coupled LiDAR-Inertial Odometry

被引:1
|
作者
Chen, Ziyu [1 ]
Zhu, Hui [2 ]
Yu, Biao [2 ]
Jiang, Chunmao [1 ]
Hua, Chen [1 ]
Fu, Xuhui [1 ]
Kuang, Xinkai [1 ]
机构
[1] Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China
[2] Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China
关键词
Laser radar; Feature extraction; Simultaneous localization and mapping; Noise; Accuracy; Location awareness; Data mining; Degenerated environments; intensity gradient; localization; simultaneous localization and mapping (SLAM); weighting function; ROBUST;
D O I
10.1109/TIM.2024.3427795
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Simultaneous localization and mapping (SLAM) plays an important role in the state estimation of mobile robots. Most popular LiDAR SLAM (L-SLAM) methods extract feature points only from the geometric structure of the environment, which can result in inaccurate localization in degenerated scenarios. In this article, we present a novel framework for LiDAR intensity gradient enhanced tightly coupled LiDAR-inertial odometry (IGE-LIO). The framework proposes a novel LiDAR intensity gradient-based feature extraction approach for accurate pose estimation, overcoming the challenges faced by L-SLAM in degenerated environments. After computing the intensity gradient of each LiDAR point, we dynamically extract intensity edge points (IEPs) from texture information. In addition, we extract geometric planar points (GPPs) and geometric edge points (GEPs) based on geometric information. Then, the error analysis is performed on each type of feature points, and the weighting functions are designed to correct measurement noise and mitigate biases introduced by the additional uncertainty in feature extraction. Subsequently, an iterative extended Kalman filter (IEKF) framework is constructed by combining residuals from point-to-plane and point-to-edge associations. Finally, extensive experiments are conducted in indoor, outdoor, and LiDAR degenerated scenarios. The results demonstrate the significantly improved robustness and accuracy of our proposed method compared with the existing geometric-only methods, especially in LiDAR degenerated scenarios.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] LIO-LOT: Tightly-Coupled Multi-Object Tracking and LiDAR-Inertial Odometry
    Li, Xingxing
    Yan, Zhuohao
    Feng, Shaoquan
    Xia, Chunxi
    Li, Shengyu
    Zhou, Yuxuan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (01) : 742 - 756
  • [2] RI-LIO: Reflectivity Image Assisted Tightly-Coupled LiDAR-Inertial Odometry
    Zhang, Yanfeng
    Tian, Yunong
    Wang, Wanguo
    Yang, Guodong
    Li, Zhishuo
    Jing, Fengshui
    Tan, Min
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (03) : 1802 - 1809
  • [3] SW-LIO: A Sliding Window Based Tightly Coupled LiDAR-Inertial Odometry
    Wang, Zelin
    Liu, Xu
    Yang, Limin
    Gao, Feng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (10): : 6675 - 6682
  • [4] DY-LIO: Tightly Coupled LiDAR-Inertial Odometry for Dynamic Environments
    Zou, Jingliang
    Chen, Huangsong
    Shao, Liang
    Bao, Haoran
    Tang, Hesheng
    Xiang, Jiawei
    Liu, Jun
    IEEE SENSORS JOURNAL, 2024, 24 (21) : 34756 - 34765
  • [5] Invariant Extended Kalman Filtering for Tightly Coupled LiDAR-Inertial Odometry and Mapping
    Shi, Pengcheng
    Zhu, Zhikai
    Sun, Shiying
    Zhao, Xiaoguang
    Tan, Min
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2023, 28 (04) : 2213 - 2224
  • [6] D-LIOM: Tightly-Coupled Direct LiDAR-Inertial Odometry and Mapping
    Wang, Zhong
    Zhang, Lin
    Shen, Ying
    Zhou, Yicong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 3905 - 3920
  • [7] FMCW-LIO: A Doppler LiDAR-Inertial Odometry
    Zhao, Mingle
    Wang, Jiahao
    Gao, Tianxiao
    Xu, Chengzhong
    Kong, Hui
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (06): : 5727 - 5734
  • [8] iG-LIO: An Incremental GICP-Based Tightly-Coupled LiDAR-Inertial Odometry
    Chen, Zijie
    Xu, Yong
    Yuan, Shenghai
    Xie, Lihua
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (02) : 1883 - 1890
  • [9] Tightly-coupled Lidar-inertial Odometry and Mapping in Real Time
    Dai, Wei
    Tian, Bailing
    Chen, Hongming
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 3258 - 3263
  • [10] FAST-LIO: A Fast, Robust LiDAR-Inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter
    Xu, Wei
    Zhang, Fu
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 3317 - 3324