A Comprehensive Analysis of Network Security Attack Classification using Machine Learning Algorithms

被引:0
|
作者
Alqahtani, Abdulaziz Saeed [1 ]
Altammami, Osamah A. [1 ]
Haq, Mohd Anul [2 ]
机构
[1] Majmaah Univ, Coll Comp & Informat Sci, Dept Comp Sci, Al Majmaah 11952, Saudi Arabia
[2] Majmaah Univ, Coll Business Adm, Al Majmaah 11952, Saudi Arabia
关键词
Machine learning; cyber security; intrusion detection; network security;
D O I
10.14569/IJACSA.2024.01504127
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As internet usage and connected devices continue to proliferate, the concern for network security among individuals, businesses, and governments has intensified. Cybercriminals exploit these opportunities through various attacks, including phishing emails, malware, and DDoS attacks, leading to disruptions, data exposure, and financial losses. In response, this study investigates the effectiveness of machine learning algorithms for enhancing intrusion detection systems in network security. Our findings reveal that Random Forest demonstrates superior performance, achieving 90% accuracy and balanced precision-recall scores. KNN exhibits robust predictive capabilities, while Logistic Regression delivers commendable accuracy, precision, and recall. However, Naive Bayes exhibits slightly lower performance compared to other algorithms. The study underscores the significance of leveraging advanced machine learning techniques for accurate intrusion detection, with Random Forest emerging as a promising choice. Future research directions include refining models and exploring novel approaches to further enhance network security.
引用
收藏
页码:1269 / 1280
页数:12
相关论文
共 50 条
  • [41] Classification of stroke disease using machine learning algorithms
    Govindarajan, Priya
    Soundarapandian, Ravichandran Kattur
    Gandomi, Amir H.
    Patan, Rizwan
    Jayaraman, Premaladha
    Manikandan, Ramachandran
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (03) : 817 - 828
  • [42] A machine learning approach for feature selection traffic classification using security analysis
    Shafiq, Muhammad
    Yu, Xiangzhan
    Bashir, Ali Kashif
    Chaudhry, Hassan Nazeer
    Wang, Dawei
    JOURNAL OF SUPERCOMPUTING, 2018, 74 (10) : 4867 - 4892
  • [43] Machine and Deep Learning Approaches for IoT Attack Classification
    Nascita, Alfredo
    Cerasuolo, Francesco
    Di Monda, Davide
    Garcia, Jonas Thern Aberia
    Montieri, Antonio
    Pescape, Antonio
    IEEE INFOCOM 2022 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2022,
  • [44] Classification of Logging Data Using Machine Learning Algorithms
    Mukhamediev, Ravil
    Kuchin, Yan
    Yunicheva, Nadiya
    Kalpeyeva, Zhuldyz
    Muhamedijeva, Elena
    Gopejenko, Viktors
    Rystygulov, Panabek
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [45] Machine Learning for DDoS Attack Classification Using Hive Plots
    Rivas, Pablo
    DeCusatis, Casimer
    Oakley, Matthew
    Antaki, Alex
    Blaskey, Nicholas
    LaFalce, Steven
    Stone, Stephen
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 401 - 407
  • [46] Ransomware Classification and Detection With Machine Learning Algorithms
    Masum, Mohammad
    Faruk, Md Jobair Hossain
    Shahriar, Hossain
    Qian, Kai
    Lo, Dan
    Adnan, Muhaiminul Islam
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 316 - 322
  • [47] Encrypted Network Traffic Analysis and Classification Utilizing Machine Learning
    Alwhbi, Ibrahim A.
    Zou, Cliff C.
    Alharbi, Reem N.
    SENSORS, 2024, 24 (11)
  • [48] A machine learning approach for feature selection traffic classification using security analysis
    Muhammad Shafiq
    Xiangzhan Yu
    Ali Kashif Bashir
    Hassan Nazeer Chaudhry
    Dawei Wang
    The Journal of Supercomputing, 2018, 74 : 4867 - 4892
  • [49] Water quality classification using machine learning algorithms
    Nasir, Nida
    Kansal, Afreen
    Alshaltone, Omar
    Barneih, Feras
    Sameer, Mustafa
    Shanableh, Abdallah
    Al-Shamma'a, Ahmed
    JOURNAL OF WATER PROCESS ENGINEERING, 2022, 48
  • [50] A Comprehensive Survey and Tutorial on Smart Vehicles: Emerging Technologies, Security Issues, and Solutions Using Machine Learning
    Ahmad, Usman
    Han, Mu
    Jolfaei, Alireza
    Jabbar, Sohail
    Ibrar, Muhammad
    Erbad, Aiman
    Song, Houbing Herbert
    Alkhrijah, Yazeed
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 15314 - 15341