共 32 条
Moser-Trudinger inequalities: from local to global
被引:0
作者:
Fontana, Luigi
[1
]
Morpurgo, Carlo
[2
]
Qin, Liuyu
[3
]
机构:
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, Milan, Italy
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] Hunan Univ Finance & Econ, Dept Math & Stat, Changsha, Hunan, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Moser-Trudinger inequality;
Poincare' inequality;
Riemannian manifolds;
UNBOUNDED-DOMAINS;
RIEMANNIAN-MANIFOLDS;
EIGENVALUE;
D O I:
10.1007/s10231-024-01481-9
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Given a general complete Riemannian manifold M, we introduce the concept of "local Moser-Trudinger inequality on W1,n(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1,n}(M)$$\end{document}". We show how the validity of the Moser-Trudinger inequality can be extended from a local to a global scale under additional assumptions: either by assuming the validity of the Poincar & eacute; inequality, or by imposing a stronger norm condition. We apply these results to Hadamard manifolds. The technique is general enough to be applicable also in sub-Riemannian settings, such as the Heisenberg group.
引用
收藏
页码:231 / 243
页数:13
相关论文