Moser-Trudinger inequalities: from local to global

被引:0
作者
Fontana, Luigi [1 ]
Morpurgo, Carlo [2 ]
Qin, Liuyu [3 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, Milan, Italy
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] Hunan Univ Finance & Econ, Dept Math & Stat, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Moser-Trudinger inequality; Poincare' inequality; Riemannian manifolds; UNBOUNDED-DOMAINS; RIEMANNIAN-MANIFOLDS; EIGENVALUE;
D O I
10.1007/s10231-024-01481-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a general complete Riemannian manifold M, we introduce the concept of "local Moser-Trudinger inequality on W1,n(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1,n}(M)$$\end{document}". We show how the validity of the Moser-Trudinger inequality can be extended from a local to a global scale under additional assumptions: either by assuming the validity of the Poincar & eacute; inequality, or by imposing a stronger norm condition. We apply these results to Hadamard manifolds. The technique is general enough to be applicable also in sub-Riemannian settings, such as the Heisenberg group.
引用
收藏
页码:231 / 243
页数:13
相关论文
共 32 条