Uniqueness and non-degeneracy of solutions for nonlinear fractional Schrodinger equation with perturbation

被引:0
|
作者
Wu, Yuanda [1 ]
Zhang, Yimin [1 ]
机构
[1] Wuhan Univ Technol, Ctr Math Sci, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1063/5.0208876
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper concerned a fractional Schr & ouml;dinger equation in whole space, for epsilon > 0 is a small parameter, epsilon(2s)(-Delta)(s)u + V(x)u = |u|(p-2)u, where 12<s<1, N > 1 and 2<p<2N/N-2s. We prove the non-degeneracy and uniqueness of bubble solutions by using local Pohozaev identity and finite dimensional reduction, which are the cornerstones to construct different type solutions.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] THE NON-LINEAR SCHRODINGER EQUATION WITH NON-PERIODIC POTENTIAL: INFINITE-BUMP SOLUTIONS AND NON-DEGENERACY
    Magnus, Robert
    Moschetta, Olivier
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (02) : 587 - 626
  • [22] Classification, non-degeneracy and existence of solutions to nonlinear Choquard equations
    Huang, Zhihua
    Liu, Chao
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2024, 26 (02)
  • [23] Non-degeneracy of single-peak solutions to a Kirchhoff equation
    Yan, Jiahong
    Yang, Jing
    APPLICABLE ANALYSIS, 2023, 102 (04) : 1222 - 1228
  • [24] Non-degeneracy and uniqueness of the radial solutions to a coupled k-Hessian system
    Wang, Guotao
    Zhang, Qi
    APPLIED MATHEMATICS LETTERS, 2022, 133
  • [25] Non-degeneracy and uniqueness of solutions to singular mean field equations on bounded domains
    Bartolucci, Daniele
    Jevnikar, Aleks
    Lin, Chang-Shou
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (01) : 716 - 741
  • [26] Non-degeneracy and uniqueness of solutions to general singular Toda systems on bounded domains
    Bartolucci, Daniele
    Jevnikar, Aleks
    Jin, Jiaming
    Lin, Chang-Shou
    Liu, Senli
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 525 (02)
  • [27] Non-degeneracy of the Bubble Solutions for the Fractional Prescribed Curvature Problem and Applications
    Yuxia Guo
    Yichen Hu
    Ting Liu
    Jianjun Nie
    The Journal of Geometric Analysis, 2023, 33
  • [28] A CRITERION FOR THE NON-DEGENERACY OF THE WAVE EQUATION
    HARTMAN, P
    WINTNER, A
    AMERICAN JOURNAL OF MATHEMATICS, 1949, 71 (01) : 206 - 213
  • [29] Non-degeneracy of the Bubble Solutions for the Fractional Prescribed Curvature Problem and Applications
    Guo, Yuxia
    Hu, Yichen
    Liu, Ting
    Nie, Jianjun
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (05)
  • [30] Non-degeneracy of multi-peak solutions for the Schrodinger-Poisson problem
    Chen, Lin
    Ding, Hui-Sheng
    Li, Benniao
    Ye, Jianghua
    ADVANCED NONLINEAR STUDIES, 2023, 23 (01)