Leveraging porosity and morphology in hierarchically porous carbon microtubes for CO2 capture and separation from humid flue gases

被引:8
|
作者
Wang, Lei [1 ]
Ma, Yukun [1 ]
Liu, Huili [1 ]
Guo, Yanzhen [1 ]
Yang, Baocheng [1 ]
Chang, Binbin [1 ]
机构
[1] Huanghe Sci & Technol Coll, Inst Nanostruct Funct Mat, Henan Prov Key Lab Nanocomposites & Applicat, Zhengzhou 450006, Henan, Peoples R China
关键词
Leveraging porosity and morphology; Hierarchical porosity; CO 2 capture and separation; Humidity; ADSORPTION;
D O I
10.1016/j.seppur.2024.128910
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Leveraging porosity, surface chemistry and morphology of porous carbons play a critical role in CO2 2 capture performance. However, the effective and sustainable synthesis of porous carbons with well-interconnected hierarchical pore structure, high-proportioned micropores and high yield remains a huge challenging by a mild one-step chemical activation without damaging the natural unique nanostructure. Here, we proposed a green and sustainable strategy to fabricate porous carbons with tailorable porosity and unique tubular structure by an inorganic dynamic porogen of CuCl2. 2 . The dynamic activation mechanism of CuCl2 2 was explored in detail. In particular, the hierarchical porosity with a high-proportioned narrow micropores can be finely tuned without sacrificing the natural tubular morphology. Importantly, the resultant porous carbon adsorbents have an excellent resistance to water vapor, which can capture CO2 2 from humid flue gases with satisfactory adsorption capacity and selectivity. The HPCM-3 can achieve the best CO2 2 uptakes of 4.05 and 2.05 mmol/g under 100 kPa at 25 and 50 degrees C, respectively. Such superior CO2 2 adsorption behaviors can be well maintained even at high humidity of 70 %, and hardly decay with the enhancement of humidity. This route provides a promising avenue for developing the practical trace CO2 2 carbon-based adsorbents on a large scale to sieve CO2 2 from humid flue gases.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Adsorption Performance of Physically Activated Biochars for Postcombustion CO2 Capture from Dry and Humid Flue Gas
    Manya, Joan J.
    Garcia-Morcate, David
    Gonzalez, Belen
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [22] MWCNT Decorated Rich N-Doped Porous Carbon with Tunable Porosity for CO2 Capture
    Xiong, Yuanjie
    Wang, Yuan
    Jiang, Housheng
    Yuan, Shaojun
    MOLECULES, 2021, 26 (11):
  • [23] Porous organic polymers for CO2 capture, separation and conversion
    Song, Kyung Seob
    Fritz, Patrick W.
    Coskun, Ali
    CHEMICAL SOCIETY REVIEWS, 2022, 51 (23) : 9831 - 9852
  • [24] Progress of CO2 capture and separation by porous organic polymers
    Zhu, Xiang
    Lü, Wenjie
    Hu, Jun
    Wang, Hualin
    Liu, Honglai
    Huagong Xuebao/CIESC Journal, 2014, 65 (05): : 1553 - 1562
  • [25] Unraveling the mechanism of CO2 capture and separation by porous liquids
    Yin, Jie
    Fu, Wendi
    Zhang, Jinrui
    Ran, Hongshun
    Lv, Naixia
    Chao, Yanhong
    Li, Hongping
    Zhu, Wenshuai
    Liu, Hui
    Li, Huaming
    RSC ADVANCES, 2020, 10 (70) : 42706 - 42717
  • [26] Defluorinated Porous Carbon Nanomaterials for CO2 Capture
    Wang, Ren
    Xi, Sun-Chang
    Wang, Dong-Yue
    Dou, Min
    Dong, Bin
    ACS APPLIED NANO MATERIALS, 2021, 4 (10) : 10148 - 10154
  • [27] Review of recent process developments in the field of carbon dioxide (CO2) capture from power plants flue gases and the future perspectives
    Obi, Donald
    Onyekuru, Samuel
    Orga, Anslem
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2024, 43 (01)
  • [28] CO2 capture in humid gas using ZnO/activated carbon and ZnO reactivity with CO2
    Taira, Kenji
    Nakao, Kenji
    Suzuki, Kimihito
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2015, 115 (02) : 563 - 579
  • [29] Nitrogen-rich hierarchically porous polyaniline-based adsorbents for carbon dioxide (CO2) capture
    Kutorglo, Edith Mawunya
    Hassouna, Fatima
    Beltzung, Anna
    Kopecky, Dusan
    Sedlarova, Ivona
    Soos, Miroslav
    CHEMICAL ENGINEERING JOURNAL, 2019, 360 : 1199 - 1212
  • [30] ECONOMICAL CO2 CAPTURE FROM FOSSIL FLUE UTILIZATION
    David, Elena
    Stefanescu, I.
    Armeanu, A.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2010, 72 (01): : 135 - 144