共 50 条
Rasmussen invariants of Whitehead doubles and other satellites
被引:1
|作者:
Lewark, Lukas
[1
]
Zibrowius, Claudius
[2
]
机构:
[1] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Ruhr Univ Bochum, Fak Math, Univ Str 150, D-44780 Bochum, Germany
来源:
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK
|
2024年
/
2024卷
/
816期
关键词:
KNOT FLOER HOMOLOGY;
OZSVATH-SZABO;
CONCORDANCE INVARIANTS;
LINKS;
TAU;
D O I:
10.1515/crelle-2024-0061
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove formulae for the F-2-Rasmussen invariant of satellite knots of patterns with wrapping number 2, using the multicurve technology for Khovanov and Bar-Natan homology developed by Kotelskiy, Watson, and the second author. A new concordance homomorphism, which is independent of the Rasmussen invariant, plays a central role in these formulae. We also explore whether similar formulae hold for the Ozsvath-Szabo invariant tau.
引用
收藏
页码:241 / 296
页数:56
相关论文