Rasmussen invariants of Whitehead doubles and other satellites

被引:1
|
作者
Lewark, Lukas [1 ]
Zibrowius, Claudius [2 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Ruhr Univ Bochum, Fak Math, Univ Str 150, D-44780 Bochum, Germany
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2024年 / 2024卷 / 816期
关键词
KNOT FLOER HOMOLOGY; OZSVATH-SZABO; CONCORDANCE INVARIANTS; LINKS; TAU;
D O I
10.1515/crelle-2024-0061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove formulae for the F-2-Rasmussen invariant of satellite knots of patterns with wrapping number 2, using the multicurve technology for Khovanov and Bar-Natan homology developed by Kotelskiy, Watson, and the second author. A new concordance homomorphism, which is independent of the Rasmussen invariant, plays a central role in these formulae. We also explore whether similar formulae hold for the Ozsvath-Szabo invariant tau.
引用
收藏
页码:241 / 296
页数:56
相关论文
共 50 条