Efficient model updating of shaft-raft-hull system using multi-stage convolutional neural network combined with sensitivity analysis

被引:1
作者
Lu, Mengwei [1 ]
Jiao, Sujuan [1 ]
Deng, Jialei [1 ]
Wang, Chenhao [1 ]
Zhang, Zhenguo [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Dongchuan Rd 800, Shanghai 200200, Peoples R China
基金
中国国家自然科学基金;
关键词
Model updating; Substructure method; Convolutional neural network; Sensitivity analysis; FINITE-ELEMENT MODEL; ARTIFICIAL BOUNDARY-CONDITIONS; SUBSTRUCTURING METHOD; VIBRATION ANALYSIS; RESPONSE FUNCTION; IDENTIFICATION; OPTIMIZATION;
D O I
10.1016/j.oceaneng.2024.119041
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Model updating for marine shaft-raft-hull systems presents significant challenges due to the numerous components and the resulting inaccessible parameters. This study introduces an advanced framework for updating the model parameters of these complex coupling systems using convolutional neural networks (CNNs). Rapid analysis technique based on the substructure synthesis method is employed to enhance the efficiency of generating the CNN training dataset. Global sensitivity analysis is then utilized to identify critical parameters across various frequency bands. Informed by parameter sensitivity, the frequency bands are segmented, and a multi-stage CNN model updating strategy is proposed. The effectiveness of this method is validated through numerical simulations and experimental studies on a scaled shaft-raft-hull model. The findings demonstrate that segmenting the dataset based on global sensitivity analysis results markedly improves the convergence of CNNs, providing a robust solution for model updating in complex marine systems.
引用
收藏
页数:16
相关论文
共 49 条
[1]   A global sensitivity analysis framework for hybrid simulation [J].
Abbiati, G. ;
Marelli, S. ;
Tsokanas, N. ;
Sudret, B. ;
Stojadinovic, B. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 146
[2]   A sensitivity-based one-parameter-at-a-time model updating method [J].
Batou, A. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 122 :247-255
[3]   A non-intrusive dynamic sensitivity-based substructure model updating method for nonlinear systems [J].
Cao, Zhifu ;
Wei, Haibo ;
Liang, Daosen ;
Jia, Zichu ;
Yao, Jianyao ;
Jiang, Dong .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 248
[4]   Structural system identification using degree of freedom-based reduction and hierarchical clustering algorithm [J].
Chang, Seongmin ;
Baek, Sungmin ;
Kim, Ki-Ook ;
Cho, Maenghyo .
JOURNAL OF SOUND AND VIBRATION, 2015, 346 :139-152
[5]   Vibration analysis of a submarine elastic propeller-shaft-hull system using FRF-based substructuring method [J].
Chen, Feng ;
Chen, Yong ;
Hua, Hongxing .
JOURNAL OF SOUND AND VIBRATION, 2019, 443 :460-482
[6]   Longitudinal vibration and unsteady thrust transmission of the rim driven thruster induced by ingested turbulence [J].
Chen, Y. ;
Wang, L. ;
Hua, H. X. .
OCEAN ENGINEERING, 2017, 131 :149-161
[7]   Interval model updating using perturbation method and Radial Basis Function neural networks [J].
Deng, Zhongmin ;
Guo, Zhaopu ;
Zhang, Xinjie .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 84 :699-716
[8]   ERATOSTHENES MEASUREMENT OF THE EARTH RECONSIDERED [J].
DUTKA, J .
ARCHIVE FOR HISTORY OF EXACT SCIENCES, 1993, 46 (01) :55-66
[9]  
Friswell MI, 1995, Finite Element Model Updating in Structural Dynamics, DOI DOI 10.1007/978-94-015-8508-8
[10]   Characterization of the modal response using Deep recurrent neural networks [J].
Gonzalez, Wladimir M. ;
Ferrada, Andres ;
Boroschek, Ruben L. ;
Droguett, Enrique Lopez .
ENGINEERING STRUCTURES, 2022, 256