Computational Prediction of Multiple Antigen Epitopes
被引:2
作者:
Viswanathan, R.
论文数: 0引用数: 0
h-index: 0
机构:
Yeshiva Coll, Dept Chem & Biochem, New York, NY 10033 USAYeshiva Coll, Dept Chem & Biochem, New York, NY 10033 USA
Viswanathan, R.
[1
]
Carroll, M.
论文数: 0引用数: 0
h-index: 0
机构:
Yeshiva Coll, Dept Chem & Biochem, New York, NY 10033 USAYeshiva Coll, Dept Chem & Biochem, New York, NY 10033 USA
Carroll, M.
[1
]
Roffe, A.
论文数: 0引用数: 0
h-index: 0
机构:
Stern Coll Women, Dept Chem & Biochem, New York, NY 10016 USAYeshiva Coll, Dept Chem & Biochem, New York, NY 10033 USA
Roffe, A.
[2
]
Fajardo, J. E.
论文数: 0引用数: 0
h-index: 0
机构:
Albert Einstein Coll Med, Dept Syst & Computat Biol, Bronx, NY 10461 USAYeshiva Coll, Dept Chem & Biochem, New York, NY 10033 USA
Fajardo, J. E.
[3
]
Fiser, A.
论文数: 0引用数: 0
h-index: 0
机构:
Yeshiva Coll, Dept Chem & Biochem, New York, NY 10033 USA
Albert Einstein Coll Med, Dept Syst & Computat Biol, Bronx, NY 10461 USAYeshiva Coll, Dept Chem & Biochem, New York, NY 10033 USA
Fiser, A.
[1
,3
]
机构:
[1] Yeshiva Coll, Dept Chem & Biochem, New York, NY 10033 USA
[2] Stern Coll Women, Dept Chem & Biochem, New York, NY 10016 USA
[3] Albert Einstein Coll Med, Dept Syst & Computat Biol, Bronx, NY 10461 USA
Motivation: Identifying antigen epitopes is essential in medical applications, such as immunodiagnostic reagent discovery, vaccine design, and drug development. Computational approaches can complement low-throughput, time-consuming, and costly experimental determination of epitopes. Currently available prediction methods, however, have moderate success predicting epitopes, which limits their applicability. Epitope prediction is further complicated by the fact that multiple epitopes may be located on the same antigen and complete experimental data is often unavailable. Results: Here, we introduce the antigen epitope prediction program ISPIPab that combines information from two feature-based methods and a docking-based method. We demonstrate that ISPIPab outperforms each of its individual classifiers as well as other state-of-the-art methods, including those designed specifically for epitope prediction. By combining the prediction algorithm with hierarchical clustering, we show that we can effectively capture epitopes that align with available experimental data while also revealing additional novel targets for future experimental investigations.