Real-time sensing approach for optical frequency domain reflectometry using an FPGA-based high-speed demodulation algorithm

被引:1
作者
Wang, Haomao [1 ]
Zhai, Tong [1 ]
Wang, Yifan [1 ]
Liu, Youze [1 ]
Zhou, Rui [1 ]
Peng, Xin [1 ]
Zhang, Zhiguo [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
OFDR; COMPENSATION; TEMPERATURE; ACCURACY; LASER;
D O I
10.1364/OE.537627
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical frequency-domain reflectometry (OFDR) is pivotal in structural health monitoring. However, real-time sensing remains challenging owing to the demodulation speed limitations imposed by hardware constraints and intricate processes. To address this, we propose an FPGA-based high-speed demodulation algorithm employing a 2D FFT and frequency-domain cross-correlation algorithm. The experiments demonstrate that our system achieves the following specifications: sensing length of 50 m, spatial resolution of 6.4 mm, strain resolution of 16 mu epsilon, strain range of +/- 2000 mu epsilon, and real-time sensing rate of 24 Hz. We present what we believe is a novel approach for real-time OFDR sensing with limited hardware resources and potential broader applications.
引用
收藏
页码:33247 / 33261
页数:15
相关论文
共 31 条
[1]   Real-Time Optical Fiber-Based Distributed Temperature Monitoring of Insulation Oil-Immersed Commercial Distribution Power Transformer [J].
Badar, Mudabbir ;
Lu, Ping ;
Wang, Qirui ;
Boyer, Thomas ;
Chen, Kevin P. ;
Ohodnicki, Paul R. .
IEEE SENSORS JOURNAL, 2021, 21 (03) :3013-3019
[2]   Integrated Auxiliary Interferometer for Self-Correction of Nonlinear Tuning in Optical Frequency Domain Reflectometry [J].
Badar, Mudabbir ;
Lu, Ping ;
Buric, Michael ;
Ohodnicki, Paul, Jr. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (21) :6097-6103
[3]   Development and Pilot-Scale Demonstration of Optical Frequency Domain Reflectometry (OFDR) for Gas Pipeline Monitoring [J].
Brister, Matthew M. ;
Naeem, Khurram ;
Lalam, Nageswara ;
Ohodnicki, Paul ;
Wright, Ruishu F. .
OPTICAL WAVEGUIDE AND LASER SENSORS II, 2023, 12532
[4]   Performance Study of a Zirconia-Doped Fiber for Distributed Temperature Sensing by OFDR at 800 °C [J].
Bulot, Patrick ;
Bernard, Remy ;
Cieslikiewicz-Bouet, Monika ;
Laffont, Guillaume ;
Douay, Marc .
SENSORS, 2021, 21 (11)
[5]   Real-Time Monitoring of Strain Processes With Large-Range and High-Spatial Resolution Using the Method of Weak Reflection FBG Measurement Based on OFDR [J].
Chen, Bin ;
Li, Ang ;
Yang, Jun ;
Zhang, Dezhi ;
Li, Jin ;
Zhang, Min ;
Cheng, Qianqian ;
Zhu, Jie ;
Li, Yaolong .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 :1-11
[6]   Investigation of the interpolation method to improve the distributed strain measurement accuracy in optical frequency domain reflectometry systems [J].
Cui, Jiwen ;
Zhao, Shiyuan ;
Yang, Di ;
Ding, Zhenyang .
APPLIED OPTICS, 2018, 57 (06) :1424-1431
[7]  
Dillon T., 2004, HIGH PERFORMANCE EMB
[8]   Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter [J].
Ding, Zhenyang ;
Yao, X. Steve ;
Liu, Tiegen ;
Du, Yang ;
Liu, Kun ;
Jiang, Junfeng ;
Meng, Zhuo ;
Chen, Hongxin .
OPTICS EXPRESS, 2013, 21 (03) :3826-3834
[9]   Optical frequency domain reflectometry shape sensing using an extruded optical fiber triplet for intra-arterial guidance [J].
Francoeur, Jacynthe ;
Roberge, Anthony ;
Lorre, Pierre ;
Monet, Frederic ;
Wright, Cory ;
Kadoury, Samuel ;
Kashyap, Raman .
OPTICS EXPRESS, 2023, 31 (01) :396-410
[10]   Wide-range OFDR strain sensor based on the femtosecond-laser-inscribed weak fiber Bragg grating array [J].
Fu, Cailing ;
Sui, Ronglong ;
Peng, Zhenwei ;
Meng, Yanjie ;
Zhong, Huajian ;
Shan, Rongyi ;
Liang, Wenfa ;
Liao, Changrui ;
Yin, Xiaoyu ;
Wang, Yiping .
OPTICS LETTERS, 2023, 48 (21) :5819-5822