Estimates of Kähler metrics on noncompact finite volume hyperbolic Riemann surfaces, and their symmetric products

被引:0
作者
Aryasomayajula, Anilatmaja [1 ]
Mukherjee, Arijit [1 ]
机构
[1] Indian Inst Sci Educ & Res IISER Tirupati, Transit Campus Sri Rama Engn Coll, Dept Math, Karkambadi Rd,Mangalam BO, Tirupati 517507, India
关键词
Bergman kernel; Hyperbolic Riemann surface; Fubini-study metric; Symmetric product;
D O I
10.1007/s10455-024-09967-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X denote a noncompact finite volume hyperbolic Riemann surface of genus g >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 2$$\end{document}, with only one puncture at i infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\infty $$\end{document} (identifying X with its universal cover H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}$$\end{document}). Let X<overline>:=X boolean OR{i infinity}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\overline{X}}}}:=X\cup \lbrace i\infty \rbrace $$\end{document} denote the Satake compactification of X. Let Omega X<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{{{{\overline{X}}}}}$$\end{document} denote the cotangent bundle on X<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\overline{X}}}}$$\end{document}. For k >> 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\gg 1$$\end{document}, we derive an estimate for mu X<overline>Ber,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{{ {\overline{X}}}}<^>{\textrm{Ber},{{k}}}$$\end{document}, the Bergman metric associated to the line bundle Lk:=Omega X<overline>circle times k circle times OX<overline>((k-1)i infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {L}}}<^>{k}:=\Omega _{{{{\overline{X}}}}}<^>{\otimes {{k}}}\otimes {{\mathcal {O}}}_{{{{\overline{X}}}}}((k-1)i\infty )$$\end{document}. For a given d >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 1$$\end{document}, the pull-back of the Fubini-Study metric on the Grassmannian, which we denote by mu Symd(X<overline>)FS,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{\textrm{Sym}<^>{{d}}({{\overline{X}}})}<^>{\textrm{FS},k}$$\end{document}, defines a K & auml;hler metric on Symd(X<overline>)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Sym}<^>{{d}}({{\overline{X}}})$$\end{document}, the d-fold symmetric product of X<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\overline{X}}}}$$\end{document}. Using our estimates of mu X<overline>Ber,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{{ {\overline{X}}}}<^>{\textrm{Ber},{{k}}}$$\end{document}, as an application, we derive an estimate for mu Symd(X<overline>),volFS,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{\textrm{Sym}<^>{{d}}({{\overline{X}}}),\textrm{vol}}<^>{\textrm{FS},k}$$\end{document}, the volume form associated to the (1,1)-form mu Symd(X<overline>)FS,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{\textrm{Sym}<^>{{d}}({{\overline{X}}})}<^>{\textrm{FS},k}$$\end{document}.
引用
收藏
页数:16
相关论文
共 18 条
  • [1] Arbarello E, 2011, GRUNDLEHR MATH WISS, V268, P1, DOI 10.1007/978-3-540-69392-5_1
  • [2] Aryasomayajula A., 2020, Ann. Fac. Sci. Toulouse Math, V29, P795, DOI [10.5802/afst.1646, DOI 10.5802/AFST.1646]
  • [3] Bergman kernel on Riemann surfaces and Kahler metric on symmetric products
    Aryasomayajula, Anilatmaja
    Biswas, Indranil
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2019, 30 (14)
  • [4] OFF-DIAGONAL ESTIMATES OF THE BERGMAN KERNEL ON HYPERBOLIC RIEMANN SURFACES OF FINITE VOLUME
    Aryasomayajula, Anilatmaja
    Majumder, Priyanka
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (09) : 4009 - 4020
  • [5] On the Kahler metrics over Symd (X)
    Aryasomayajula, Anilatmaja
    Biswas, Indranil
    Morye, Archana S.
    Sengupta, Tathagata
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2016, 110 : 187 - 194
  • [6] Quotient of Bergman kernels on punctured Riemann surfaces
    Auvray, Hugues
    Ma, Xiaonan
    Marinescu, George
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (03) : 2339 - 2367
  • [7] Bergman kernels on punctured Riemann surfaces
    Auvray, Hugues
    Ma, Xiaonan
    Marinescu, George
    [J]. MATHEMATISCHE ANNALEN, 2021, 379 (3-4) : 951 - 1002
  • [8] Moduli of Vortices and Grassmann Manifolds
    Biswas, Indranil
    Romao, Nuno M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 320 (01) : 1 - 20
  • [9] Freitag E., 1990, HILBERT MODULAR FORM, DOI DOI 10.1007/978-3-662-02638-0
  • [10] Friedman Joshua S., 2016, ARBEITSTAGUNG BONN 2, V319, P127