Microstructure and thermal properties of ternary chloride eutectic salts for high temperature thermal energy storage

被引:1
作者
Xi, Shaobo [1 ]
Yuan, Zhun [1 ]
Yang, Senfeng [1 ]
Gong, Fengchun [1 ]
Liu, Shule [1 ]
Wang, Weilong [1 ]
Ding, Jing [1 ]
Lu, Jianfeng [1 ]
机构
[1] Sun Yat Sen Univ, Sch Mat Sci & Engn, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
Molecular dynamics simulation; Chloride molten salt; Microstructure; Thermal properties; Experimental validation; NONEQUILIBRIUM MOLECULAR-DYNAMICS; TRANSPORT-PROPERTIES; THEORETICAL PREDICTION; SHEAR VISCOSITY; SOLAR; CONFIGURATIONS; OPTIMIZATION; SIMULATIONS; PERFORMANCE; SYSTEM;
D O I
10.1016/j.est.2024.113714
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Chloride molten salts are attractive candidate materials used for effective thermal energy transfer and storage in renewable energy system as concentrating solar power, but associated thermal properties at high temperature are still insufficient in research. In this work, eutectic point verification, microstructure and thermal properties of NaCl-KCl-ZnCl2 eutectic salts with four different contents are investigated by molecular dynamics simulation based on Born-Mayer-Huggins potential and experimental measurement. The density, specific heat capacity, viscosity, self-diffusion coefficient and thermal conductivity of four ternary eutectic salts are predicted with experimental validation and their correlations with different temperature and composition are proposed, and the mechanism of desirable thermal performance variation is revealed from the microscopic point of view. As ZnCl2 content increases, the thermal conductivity and specific heat capacity increase significantly, and eutectic salt #4 (18.6 %NaCl: 21.9 %KCl: 59.5 %ZnCl2) has maxima of density, specific heat capacity and thermal conductivity. The above phenomena can be attributed to the increase in potential energy and Columbic energy for more charge of Zn2+, which strengthens the interaction between atoms in the system and intensifies the collision. This work is expected to provide effective guidance on the design and application of molten salts for high temperature thermal energy storage.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Molecular simulations of the thermal and transport properties of alkali chloride salts for high-temperature thermal energy storage
    Pan, Ge-ChuanQi
    Ding, Jing
    Wang, Weilong
    Lu, Jianfeng
    Li, Jiang
    Wei, Xiaolan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 103 : 417 - 427
  • [2] Thermal properties of KCl-MgCl2 eutectic salt for high-temperature heat transfer and thermal storage system
    Lu, Jianfeng
    Yang, Senfeng
    Rong, Zhenzhou
    Pan, Gechuanqi
    Ding, Jing
    Liu, Shule
    Wei, Xiaolan
    Wang, Weilong
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 228
  • [3] Comprehensive thermal properties of ternary eutectic molten salt/nanoparticles composite phase change materials for high-temperature thermal energy storage
    Wu, Chunlei
    Wang, Qing
    Sun, Shipeng
    Wang, Xinmin
    Cui, Da
    Pan, Shuo
    Sheng, Hongyu
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 261
  • [4] Thermal conductivities and characteristics of ternary eutectic chloride/expanded graphite thermal energy storage composites
    Tian, Heqing
    Wang, Weilong
    Ding, Jing
    Wei, Xiaolan
    Song, Ming
    Yang, Jianping
    APPLIED ENERGY, 2015, 148 : 87 - 92
  • [5] Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage
    Han, Dongmei
    Lougou, Bachirou Guene
    Xu, Yantao
    Shuai, Yong
    Huang, Xing
    APPLIED ENERGY, 2020, 264 (264)
  • [6] Performance Design of High-Temperature Chloride Salts as Thermal Energy Storage Material
    Zhao, Le
    Wang, Jingyao
    Cui, Liu
    Li, Baorang
    Du, Xiaoze
    Wu, Hongwei
    JOURNAL OF THERMAL SCIENCE, 2024, 33 (02) : 479 - 490
  • [7] Performance Design of High-Temperature Chloride Salts as Thermal Energy Storage Material
    Le Zhao
    Jingyao Wang
    Liu Cui
    Baorang Li
    Xiaoze Du
    Hongwei Wu
    Journal of Thermal Science, 2024, 33 : 479 - 490
  • [8] Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials
    Tian, Heqing
    Wang, Weilong
    Ding, Jing
    Wei, Xiaolan
    Huang, Chenglong
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 149 : 187 - 194
  • [9] Thermal energy storage using chloride salts and their eutectics
    Myers, Philip D., Jr.
    Goswami, D. Yogi
    APPLIED THERMAL ENGINEERING, 2016, 109 : 889 - 900
  • [10] Preparation and Thermophysical Properties of Ternary Eutectic Composite PCM for Thermal Energy Storage Applications
    Ramalingam, Sureshkumar Kanchipuram
    Kannan, K. Gopi
    Muchtar, Ahmad Rifqi
    Sathyanarayanan, Seetharaman
    Dhayalini, Bala
    Balaji, Arun
    Velu, Karthick
    Rajagopalan, Parameshwaran
    Kalaiselvam, S.
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2024, 43 (01): : 243 - 254