High-performance multilevel nonvolatile organic field-effect transistor memory based on multilayer organic semiconductor heterostructures

被引:4
作者
Qian, Yangzhou [1 ]
Li, Jiayu [1 ,2 ,3 ]
Li, Wen [1 ]
Song, Ziyi [1 ]
Yu, Hao [1 ]
Feng, Ziyi [1 ]
Shi, Wei [4 ]
Huang, Wei [4 ]
Yi, Mingdong [1 ]
机构
[1] Nanjing Univ Posts & Telecommun NUPT, Inst Adv Mat IAM, State Key Lab Organ Elect & Informat Displays, Jiangsu Key Lab Biosensors, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun NUPT, Coll Elect & Opt Engn, Jiangsu Prov Engn Res Ctr Fabricat & Applicat Spec, Nanjing 210023, Peoples R China
[3] Nanjing Univ Posts & Telecommun NUPT, Coll Flexible Elect Future Technol, Jiangsu Prov Engn Res Ctr Fabricat & Applicat Spec, Nanjing 210023, Peoples R China
[4] Nanjing Tech Univ, Inst Adv Mat, Key Lab Flexible Elect, Nanjing 211816, Peoples R China
基金
中国国家自然科学基金;
关键词
AMBIPOLAR TRANSPORT; GATE; ELECTRETS; THICKNESS; VOLTAGE; LAYER;
D O I
10.1039/d4tc02842b
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nonvolatile organic field-effect transistor (OFET) memory devices have great potential for next-generation memory due to their advantages of low cost, light weight, mechanical flexibility and easy processing. However, addressing the issue of limited data storage capacity remains a critical challenge. In this study, we propose a multilevel nonvolatile OFET memory device featuring five-layer organic semiconductor heterostructures composed of pentacene and N,N '-ditridecylperylene-3,4,9,10-tetracarb-oxylic diimide (P13). The innovative semiconductor heterostructures exhibit quantum well-like characteristics, and efficiently function as charge trapping sites. These characteristics synergize with the charge trapping properties of the polystyrene (PS) layer, resulting in a significant enhancement of the device's charge storage capacity. The organic semiconductor heterostructure-based memory device demonstrates exceptional nonvolatile memory properties, including a large charge storage capacity (5.48 x 1012 cm-2), a high mobility (2.06 cm2 V-1 s-1), a high ON/OFF current ratio (105), and a long data retention (over 104 s). Moreover, a four-level data storage was achieved owing to the device's high charge capacity properties, significantly augmenting memory capacity. This research presents a promising methodology for the realization of high-performance organic memory for future technology. A multilevel organic field-effect transistor memory based on organic heterostructures is demonstrated. Benefiting from the charge trapping of the quantum well-like heterostructures, the memory exhibited multilevel nonvolatile memory properties.
引用
收藏
页码:16092 / 16099
页数:8
相关论文
共 45 条
[1]   Air stable, ambipolar organic transistors and inverters based upon a heterojunction structure of pentacene on N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic di-imide [J].
An, Min-Jun ;
Seo, Hoon-Seok ;
Zhang, Ying ;
Oh, Jeong-Do ;
Choi, Jong-Ho .
APPLIED PHYSICS LETTERS, 2010, 97 (02)
[2]   Organic non-volatile memory based on pentacene field-effect transistors using a polymeric gate electret [J].
Baeg, Kang-Jun ;
Noh, Yong-Young ;
Ghim, Jieun ;
Kang, Seok-Ju ;
Lee, Hyemi ;
Kim, Dong-Yu .
ADVANCED MATERIALS, 2006, 18 (23) :3179-+
[3]   High-Performance Top-Gated Organic Field-Effect Transistor Memory using Electrets for Monolithic Printed Flexible NAND Flash Memory [J].
Baeg, Kang-Jun ;
Khim, Dongyoon ;
Kim, Juhwan ;
Yang, Byung-Do ;
Kang, Minji ;
Jung, Soon-Won ;
You, In-Kyu ;
Kim, Dong-Yu ;
Noh, Yong-Young .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (14) :2915-2926
[4]   Concept of a Molecular Charge Storage Dielectric Layer for Organic Thin-Film Memory Transistors [J].
Burkhardt, Martin ;
Jedaa, Abdesselam ;
Novak, Michael ;
Ebel, Alexander ;
Voitchovsky, Kislon ;
Stellacci, Francesco ;
Hirsch, Andreas ;
Halik, Marcus .
ADVANCED MATERIALS, 2010, 22 (23) :2525-2528
[5]  
Chang HC, 2015, ADV MATER, V27, P27, DOI [10.1002/adma.201570002, 10.1002/adma.201403771]
[6]   AC-driven multicolor electroluminescence from a hybrid WSe2 monolayer/AlGaInP quantum well light-emitting device [J].
Chang, Ya-Hui ;
Lin, Yen-Shou ;
James Singh, Konthoujam ;
Lin, Hsiang-Ting ;
Chang, Chiao-Yun ;
Chen, Zheng-Zhe ;
Zhang, Yu-Wei ;
Lin, Shih-Yen ;
Kuo, Hao-Chung ;
Shih, Min-Hsiung .
NANOSCALE, 2023, 15 (03) :1347-1356
[7]   Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives [J].
Chen, Hongliang ;
Zhang, Weining ;
Li, Mingliang ;
He, Gen ;
Guo, Xuefeng .
CHEMICAL REVIEWS, 2020, 120 (05) :2879-2949
[8]   Design of a Photoactive Hybrid Bilayer Dielectric for Flexible Nonvolatile Organic Memory Transistors [J].
Chen, Hongliang ;
Cheng, Nongyi ;
Ma, Wei ;
Li, Mingliang ;
Hu, Shuxin ;
Gu, Lin ;
Meng, Sheng ;
Guo, Xuefeng .
ACS NANO, 2016, 10 (01) :436-445
[9]   High-Performance Nonvolatile Organic Transistor Memory Devices Using the Electrets of Semiconducting Blends [J].
Chiu, Yu-Cheng ;
Chen, Tzu-Ying ;
Chen, Yougen ;
Satoh, Toshifumi ;
Kakuchi, Toyoji ;
Chen, Wen-Chang .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (15) :12780-12788
[10]   Charge trapping in organic transistor memories: On the role of electrons and holes [J].
Debucquoy, M. ;
Rockele, M. ;
Genoe, J. ;
Gelinck, G. H. ;
Heremans, P. .
ORGANIC ELECTRONICS, 2009, 10 (07) :1252-1258