Recovering a space-dependent source term for distributed order time-space fractional diffusion equation

被引:0
作者
Lyu, Kaiyu [1 ]
Cheng, Hao [1 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
关键词
Distributed order time-space fractional diffusion equation; Inverse source problem; Fractional Sturm-Liouville operator; Iterative regularizing ensemble Kalman method; INVERSE SOURCE PROBLEM;
D O I
10.1007/s11075-024-01916-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the identification of space-dependent source function in the 1D distributed order time-space fractional diffusion equation. Such a problem is obtained from the fractional equation in which the order is replaced as a function Pi(alpha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varpi (\alpha )$$\end{document}. We prove regularity result for the direct problem, and the ill-posedness, uniqueness and conditional stability for the inverse source problem. In addition, we use iterative regularizing ensemble Kalman method to deal with inverse source problem and provide a numerical implementation. Finally, two numerical examples are conducted to demonstrate the validity of the ensemble-based method.
引用
收藏
页码:1317 / 1342
页数:26
相关论文
共 50 条
[31]   A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations [J].
Djennadi, Smina ;
Shawagfeh, Nabil ;
Abu Arqub, Omar .
CHAOS SOLITONS & FRACTALS, 2021, 150
[32]   On the recovery of a time dependent diffusion coefficient for a space fractional diffusion equation [J].
Ali, Muhammad ;
Aziz, Sara ;
Malik, Salman A. .
ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
[33]   Simultaneous inversion of time-dependent source term and fractional order for a time-fractional diffusion equation [J].
Ruan, Zhousheng ;
Zhang, Sen .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 368
[34]   Numerical methods for the forward and backward problems of a time-space fractional diffusion equation [J].
Feng, Xiaoli ;
Yuan, Xiaoyu ;
Zhao, Meixia ;
Qian, Zhi .
CALCOLO, 2024, 61 (01)
[35]   Uniqueness for an inverse source problem of determining a space dependent source in a time-fractional diffusion equation [J].
Slodicka, Marian ;
Siskova, Katarina ;
Van Bockstal, Karel .
APPLIED MATHEMATICS LETTERS, 2019, 91 :15-21
[36]   Simultaneous Determination of a Source Term and Diffusion Concentration for a Multi-Term Space-Time Fractional Diffusion Equation [J].
Malik, Salman A. ;
Ilyas, Asim ;
Samreen, Arifa .
MATHEMATICAL MODELLING AND ANALYSIS, 2021, 26 (03) :411-431
[37]   Inverse source problem for a space-time fractional diffusion equation [J].
Mohamed BenSaleh ;
Hassine Maatoug .
Ricerche di Matematica, 2024, 73 :681-713
[38]   Inverse source problem for a space-time fractional diffusion equation [J].
BenSaleh, Mohamed ;
Maatoug, Hassine .
RICERCHE DI MATEMATICA, 2024, 73 (02) :681-713
[39]   Inverse source problem for a distributed-order time fractional diffusion equation [J].
Cheng, Xiaoliang ;
Yuan, Lele ;
Liang, Kewei .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (01) :17-32
[40]   Bayesian approach to a nonlinear inverse problem for a time-space fractional diffusion equation [J].
Zhang, Yuan-Xiang ;
Jia, Junxiong ;
Yan, Liang .
INVERSE PROBLEMS, 2018, 34 (12)