Predicting Depression Status After Transcranial Direct Current Stimulation Treatment Using Machine Learning

被引:0
作者
Rotbei, Sayna [1 ]
D'Urso, Giordano [2 ]
Botta, Alessio [1 ]
机构
[1] Univ Naples Federico II, Dept Elect Engn & Informat Technol, Naples, Italy
[2] Univ Naples Federico II, Dept Neurosci Reprod & Odontostomatol Sci, Sect Psychiat, Naples, Italy
来源
9TH EUROPEAN MEDICAL AND BIOLOGICAL ENGINEERING CONFERENCE, VOL 2, EMBEC 2024 | 2024年 / 113卷
关键词
Artificial intelligence; ML; Depression; Hamilton Depression Rating Scale; Transcranial Direct Current Stimulation;
D O I
10.1007/978-3-031-61628-0_24
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Depression is a serious medical illness that adversely affects how a person feels, thinks, and behaves. This illness can be treated with the aid of Transcranial Direct Current Stimulation (tDCS), which can help to reduce the symptoms of depression. The level of illness is typically evaluated using the Hamilton Depression Rating Scale (HDRS). The focus of this paper is the prediction of the HDRS score after a tDCS course. By predicting the result of tDCS, psychiatrists can provide better counseling to the patients about their future conditions after the treatment and decide wisely about the treatment method. We used different kinds of demographic information, treatment information, and the HDRS score before the treatment as predictors and supervised Machine Learning (ML) algorithms for the prediction. The analysis is conducted on 169 patients with depression. Our preliminary results show that the accuracy can be up to 63% when predicting the value of HDRS after tDCS treatment sessions as a binary variable using Gradient Boosting. This is encouraging on such a small data set. Moreover, our results provide insight into the predictors pivotal to this outcome. They show that the HDRS score at baseline, the age, and the gender of the subject are the three main predictors. The results suggest this methodology may yield very interesting results.
引用
收藏
页码:223 / 234
页数:12
相关论文
共 13 条
[1]   Using Machine Learning to Predict Remission in Patients With Major Depressive Disorder Treated With Desvenlafaxine Utiliser l'apprentissage machine pour predire la remission chez les patients souffrant de trouble depressif majeur traites par desvenlafaxine [J].
Benoit, James R. A. ;
Dursun, Serdar M. ;
Greiner, Russell ;
Cao, Bo ;
Brown, Matthew R. G. ;
Lam, Raymond W. ;
Greenshaw, Andrew J. .
CANADIAN JOURNAL OF PSYCHIATRY-REVUE CANADIENNE DE PSYCHIATRIE, 2022, 67 (01) :39-47
[2]   Validation of the Hamilton Depression Rating Scale (HDRS) in the Tunisian dialect [J].
Cheffi, N. ;
Chakroun-Walha, O. ;
Sellami, R. ;
Ouali, R. ;
Mnif, D. ;
Guermazi, F. ;
Issaoui, F. ;
Lajmi, M. ;
Benamar, B. ;
Damak, J. ;
Rekik, N. ;
Masmoudi, J. .
PUBLIC HEALTH, 2022, 202 :100-105
[3]   Predicting the Severity of Lockdown-Induced Psychiatric Symptoms with Machine Learning [J].
D'Urso, Giordano ;
Magliacano, Alfonso ;
Rotbei, Sayna ;
Iasevoli, Felice ;
de Bartolomeis, Andrea ;
Botta, Alessio .
DIAGNOSTICS, 2022, 12 (04)
[4]  
Dwyer DB, 2018, ANNU REV CLIN PSYCHO, V14, P91, DOI [10.1146/annurev-clinpsy-032816-045037, 10.1146/annurev-clinpsy-032816045037]
[5]   Early improvement in positive rather than negative emotion predicts remission from depression after pharmacotherapy [J].
Geschwind, Nicole ;
Nicolson, Nancy A. ;
Peeters, Frenk ;
van Os, Jim ;
Barge-Schaapveld, Daniela ;
Wichers, Marieke .
EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2011, 21 (03) :241-247
[6]  
Ghandeharioun A, 2017, INT CONF AFFECT, P325, DOI 10.1109/ACII.2017.8273620
[7]  
Ghassemi Marzyeh, 2020, AMIA Jt Summits Transl Sci Proc, V2020, P191
[8]   Machine Learning Prediction of Treatment Outcome in Late-Life Depression [J].
Grzenda, Adrienne ;
Speier, William ;
Siddarth, Prabha ;
Pant, Anurag ;
Krause-Sorio, Beatrix ;
Narr, Katherine ;
Lavretsky, Helen .
FRONTIERS IN PSYCHIATRY, 2021, 12
[9]   Hamilton depression rating subscales to predict antidepressant treatment outcome in the early course of treatment [J].
Helmreich, Isabella ;
Wagner, Stefanie ;
Koenig, Jochem ;
Kohnen, Ralf ;
Szegedi, Armin ;
Hiemke, Christoph ;
Tadic, Andre .
JOURNAL OF AFFECTIVE DISORDERS, 2015, 175 :199-208
[10]  
Muller AC., 2016, Introduction to Machine Learning With Python: A Guide for Data Scientists