Explainable AI Based framework for Banana Disease Detection

被引:1
作者
Ashoka, B. S. [1 ]
Pramodha, M. [2 ]
Muaad, Abdullah Y. [2 ]
Nyange, Roseline [3 ]
Anusha, A. [1 ]
Shilpa, N. G. [1 ]
Chola, Channabasava [2 ]
机构
[1] Women Maharani Cluster Univ, Maharani Sci Coll, Dept Comp Sci, Bangalore, Karnataka, India
[2] Univ Mysore, Dept Studies Comp Sci, Mysore 570006, Karnataka, India
[3] Jeonbuk Natl Univ, Dept Comp Sci & Artificial Intelligence, Jeonju Si 54896, South Korea
来源
2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024 | 2024年
关键词
Banana leaf; Machine Learning; Explainable-AI;
D O I
10.1109/ICITIIT61487.2024.10580364
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to widespread usage of banana as a staple food crop and susceptibility to numerous illnesses. Bananas require sophisticated detection techniques to support sustainable agricultural practices. Bananas are particularly susceptible to various stem and leaf spot diseases, resulting in significant economic losses within the banana cultivation sector. In this paper, a new XAI framework for banana disease detection and classification is introduced. Our framework uses state-of-the-art AI methods to analyze photos of banana plants. With great precision, it can detect a variety of illnesses like Cordana, Black Sigatoka, Pestalotiopsis, and fusarium wilt. The outcome shows that the framework performs better than current techniques in precisely identifying and categorizing banana diseases. The research employed a Convolutional Neural Networks (CNNs) to detect diseases in banana plants using RGB images of banana leaves. We used pre-trained model called EfficientnetB0 model to evaluate using two datasets BLSD and BDT. For BLSD, the model achieved an accuracy of 99.22%. Next for BDT, on the other hand, demonstrated improved performance with an accuracy of 99.63%.
引用
收藏
页数:6
相关论文
共 28 条
[1]   A Hybrid Stacked Restricted Boltzmann Machine with Sobel Directional Patterns for Melanoma Prediction in Colored Skin Images [J].
Alphonse, A. Sherly ;
Benifa, J. V. Bibal ;
Muaad, Abdullah Y. ;
Chola, Channabasava ;
Heyat, Md Belal Bin ;
Murshed, Belal Abdullah Hezam ;
Abdel Samee, Nagwan ;
Alabdulhafith, Maali ;
Al-antari, Mugahed A. .
DIAGNOSTICS, 2023, 13 (06)
[2]   Deep Learning-Based Leaf Disease Detection in Crops Using Images for Agricultural Applications [J].
Andrew, J. ;
Eunice, Jennifer ;
Popescu, Daniela Elena ;
Chowdary, M. Kalpana ;
Hemanth, Jude .
AGRONOMY-BASEL, 2022, 12 (10)
[3]   BananaLSD: A banana leaf images dataset for classification of banana leaf diseases using machine learning [J].
Arman, Shifat E. ;
Bhuiyan, Md. Abdullahil Baki ;
Abdullah, Hasan Muhammad ;
Islam, Shariful ;
Chowdhury, Tahsin Tanha ;
Hossain, Md. Arban .
DATA IN BRIEF, 2023, 50
[4]   FMDNet: An Efficient System for Face Mask Detection Based on Lightweight Model during COVID-19 Pandemic in Public Areas [J].
Benifa, J. V. Bibal ;
Chola, Channabasava ;
Muaad, Abdullah Y. Y. ;
Bin Hayat, Mohd Ammar ;
Bin Heyat, Md Belal ;
Mehrotra, Rajat ;
Akhtar, Faijan ;
Hussein, Hany S. S. ;
Vargas, Debora Libertad Ramirez ;
Castilla, Angel Kuc ;
de la Torre Diez, Isabel ;
Khan, Salabat .
SENSORS, 2023, 23 (13)
[5]   BananaSqueezeNet: A very fast, lightweight convolutional neural network for the diagnosis of three prominent banana leaf diseases [J].
Bhuiyan, Md. Abdullahil Baki ;
Abdullah, Hasan Muhammad ;
Arman, Shifat E. ;
Rahman, Sayed Saminur ;
Al Mahmud, Kaies .
SMART AGRICULTURAL TECHNOLOGY, 2023, 4
[6]   Leaf area index estimations by deep learning models using RGB images and data fusion in maize [J].
Castro-Valdecantos, P. ;
Apolo-Apolo, O. E. ;
Perez-Ruiz, M. ;
Egea, G. .
PRECISION AGRICULTURE, 2022, 23 (06) :1949-1966
[7]   Plant disease detection using drones in precision agriculture [J].
Chin, Ruben ;
Catal, Cagatay ;
Kassahun, Ayalew .
PRECISION AGRICULTURE, 2023, 24 (05) :1663-1682
[8]  
Chola C, 2021, COMPUT SCI MATH FORU, V2, P13
[9]  
Chola C., 2022, GLOB TRANSITIONS PRO, V3, P177, DOI DOI 10.1016/J.GLTP.2022.03.006
[10]   BCNet: A Deep Learning Computer-Aided Diagnosis Framework for Human Peripheral Blood Cell Identification [J].
Chola, Channabasava ;
Muaad, Abdullah Y. ;
Bin Heyat, Belal ;
Benifa, J. V. Bibal ;
Naji, Wadeea R. ;
Hemachandran, K. ;
Mahmoud, Noha F. ;
Samee, Nagwan Abdel ;
Al-Antari, Mugahed A. ;
Kadah, Yasser M. ;
Kim, Tae-Seong .
DIAGNOSTICS, 2022, 12 (11)