Boundary conditions influence on Turing patterns under anomalous diffusion: A numerical exploration

被引:0
作者
Lopez, Alejandro Valdes [1 ]
Hernandez, D. [2 ]
Aguilar-Madera, Carlos G. [3 ]
Martinez, Roxana Cortes [1 ]
Herrera-Hernandez, E. C. [1 ]
机构
[1] Univ Autonoma San Luis Potosi, Fac Ciencias Quim, Ctr Invest & Estudios Posgrad, Ave Dr Manuel Nava 6, San Luis Potosi 78210, Mexico
[2] Posgrad Ciencias Complejidad Univ Autonoma Ciudad, San Lorenzo 290,Col Valle Sur, Mexico City 03100, Mexico
[3] Univ Autonoma Nuevo Leon, Fac Ciencias Tierra, Linares 67700, NL, Mexico
关键词
Reaction-diffusion systems; Turing patterns; Anomalous diffusion; Boundary conditions; Symmetry induction; SYSTEMS; MODEL; INSTABILITIES; BIFURCATION; DYNAMICS;
D O I
10.1016/j.physd.2024.134353
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, it was investigated numerically how boundary conditions influence the formation of Turing- like patterns under various diffusion conditions in complex media. It was found that Dirichlet boundary conditions can induce their symmetry in the patterns once the boundary concentrations of morphogens reach critical thresholds that depend on the diffusion regime and the domain size. We find that anomalous diffusion, characterized in our model by the parameter lambda, can expand or contract the Turing instability region. Then, since superdiffusive conditions lead to a larger instability window, we conjecture that a possible explanation for the emergence of self-similarity in our system may be associated with the excitation of different scales. Our findings generally offer insights into reaction-diffusion systems' pattern orientation and selection mechanisms.
引用
收藏
页数:13
相关论文
共 84 条
  • [31] Fractional reaction-diffusion
    Henry, BI
    Wearne, SL
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 276 (3-4) : 448 - 455
  • [32] CRIME HOTSPOT EMERGENCE IN MEXICO CITY: A COMPLEXITY SCIENCE PERSPECTIVE
    Hernandez, D.
    Jimenez, Marco A.
    Bautista, J. A.
    [J]. ADVANCES IN COMPLEX SYSTEMS, 2023, 26 (02):
  • [33] Self-similar Turing patterns: An anomalous diffusion consequence
    Hernandez, D.
    Herrera-Hernandez, E. C.
    Nunez-Lopez, M.
    Hernandez-Coronado, H.
    [J]. PHYSICAL REVIEW E, 2017, 95 (02)
  • [34] Turing Instability and Turing-Hopf Bifurcation in Diffusive Schnakenberg Systems with Gene Expression Time Delay
    Jiang, Weihua
    Wang, Hongbin
    Cao, Xun
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (04) : 2223 - 2247
  • [35] Comparative dynamics of microglial and glioma cell motility at the infiltrative margin of brain tumours
    Juliano, Joseph
    Gil, Orlando
    Hawkins-Daarud, Andrea
    Noticewala, Sonal
    Rockne, Russell C.
    Gallaher, Jill
    Massey, Susan Christine
    Sims, Peter A.
    Anderson, Alexander R. A.
    Swanson, Kristin R.
    Canoll, Peter
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (139)
  • [36] DOMAIN SIZE DRIVEN INSTABILITY: SELF-ORGANIZATION IN SYSTEMS WITH ADVECTION
    Klika, Vaclav
    Kozak, Michal
    Gaffney, Eamonn A.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (05) : 2298 - 2322
  • [37] History dependence and the continuum approximation breakdown: the impact of domain growth on Turing's instability
    Klika, Vaclav
    Gaffney, Eamonn A.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2199):
  • [38] ANOMALOUS DIFFUSION IN HETEROGENEOUS POROUS-MEDIA
    KOCH, DL
    BRADY, JF
    [J]. PHYSICS OF FLUIDS, 1988, 31 (05) : 965 - 973
  • [39] Turing Instabilities are Not Enough to Ensure Pattern Formation
    Krause, Andrew L.
    Gaffney, Eamonn A.
    Jewell, Thomas Jun
    Klika, Vaclav
    Walker, Benjamin J.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2024, 86 (02)
  • [40] Modern perspectives on near-equilibrium analysis of Turing systems
    Krause, Andrew L.
    Gaffney, Eamonn A.
    Maini, Philip K.
    Klika, Vaclav
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2213):