Boundary conditions influence on Turing patterns under anomalous diffusion: A numerical exploration

被引:0
作者
Lopez, Alejandro Valdes [1 ]
Hernandez, D. [2 ]
Aguilar-Madera, Carlos G. [3 ]
Martinez, Roxana Cortes [1 ]
Herrera-Hernandez, E. C. [1 ]
机构
[1] Univ Autonoma San Luis Potosi, Fac Ciencias Quim, Ctr Invest & Estudios Posgrad, Ave Dr Manuel Nava 6, San Luis Potosi 78210, Mexico
[2] Posgrad Ciencias Complejidad Univ Autonoma Ciudad, San Lorenzo 290,Col Valle Sur, Mexico City 03100, Mexico
[3] Univ Autonoma Nuevo Leon, Fac Ciencias Tierra, Linares 67700, NL, Mexico
关键词
Reaction-diffusion systems; Turing patterns; Anomalous diffusion; Boundary conditions; Symmetry induction; SYSTEMS; MODEL; INSTABILITIES; BIFURCATION; DYNAMICS;
D O I
10.1016/j.physd.2024.134353
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, it was investigated numerically how boundary conditions influence the formation of Turing- like patterns under various diffusion conditions in complex media. It was found that Dirichlet boundary conditions can induce their symmetry in the patterns once the boundary concentrations of morphogens reach critical thresholds that depend on the diffusion regime and the domain size. We find that anomalous diffusion, characterized in our model by the parameter lambda, can expand or contract the Turing instability region. Then, since superdiffusive conditions lead to a larger instability window, we conjecture that a possible explanation for the emergence of self-similarity in our system may be associated with the excitation of different scales. Our findings generally offer insights into reaction-diffusion systems' pattern orientation and selection mechanisms.
引用
收藏
页数:13
相关论文
共 84 条
  • [1] Semi-analytical solutions of the Schnakenberg model of a reaction-diffusion cell with feedback
    Al Noufaey, K. S.
    [J]. RESULTS IN PHYSICS, 2018, 9 : 609 - 614
  • [2] [Anonymous], 1989, Biomathematics
  • [3] Nonlinear effects on Turing patterns: Time oscillations and chaos
    Aragon, J. L.
    Barrio, R. A.
    Woolley, T. E.
    Baker, R. E.
    Maini, P. K.
    [J]. PHYSICAL REVIEW E, 2012, 86 (02):
  • [4] ARCURI P, 1986, J MATH BIOL, V24, P141
  • [5] Pattern formation and competition in nonlinear optics
    Arecchi, FT
    Boccaletti, S
    Ramazza, P
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1999, 318 (1-2): : 1 - 83
  • [6] A two-dimensional numerical study of spatial pattern formation in interacting Turing systems
    Barrio, RA
    Varea, C
    Aragón, JL
    Maini, PK
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 1999, 61 (03) : 483 - 505
  • [7] Beentjes C.H., 2015, Pattern formation analysis in the Schnakenberg model
  • [8] ben Avraham D., 2005, Diffusion and Reactions in Fractals and Disordered Systems
  • [9] Bird R. B., 2002, Transport Phenomena, V2 nd
  • [10] Extreme multiplicity in cylindrical Rayleigh-Benard convection. I. Time dependence and oscillations
    Boronska, Katarzyna
    Tuckerman, Laurette S.
    [J]. PHYSICAL REVIEW E, 2010, 81 (03):