Incidental pulmonary nodules: Natural language processing analysis of radiology reports

被引:0
作者
Grolleau, Emmanuel [1 ,2 ]
Couraud, Sebastien [1 ,2 ,3 ]
Delevaux, Emilien Jupin [1 ,4 ]
Piegay, Celine [5 ]
Mansuy, Adeline [2 ]
de Bermont, Julie [1 ]
Cotton, Francois [1 ,6 ]
Pialat, Jean-Baptiste [1 ,6 ]
Talbot, Francois [7 ]
Boussel, Loic [1 ,6 ]
机构
[1] Claude Bernard Univ, Univ Lyon, 43 Blvd 11 Novembre 1918, F-69100 Villeurbanne, France
[2] Hosp Civils Lyon, Lyon Sud Hosp, Acute Resp Dis & Thorac Oncol Dept, 165 Chemin Grand Revoyet, F-69495 Oullins Pierre Benite, France
[3] Hosp Civils Lyon, Lyon Sud Hosp, EMR 3738 Therapeut Targeting Oncol, 165 Chemin Grand Revoyet, F-69495 Oullins Pierre Benite, France
[4] Hosp Civils Lyon, Radiol Dept, 3 Quai Celestins, F-69621 Lyon, France
[5] Hosp Civils Lyon, Lyon Sud Hosp, Dept Informat Med, 165 Chemin Grand Revoyet, F-69495 Oullins Pierre Benite, France
[6] CREATIS, UMR 5220, INSERM, U630, 7 Ave Jean Capelle, F-69621 Villeurbanne, France
[7] Hosp Civils Lyon, Dept Informat Technol, 3 Quai Celestins, F-69002 Lyon, France
来源
RESPIRATORY MEDICINE AND RESEARCH | 2024年 / 86卷
关键词
Incidental pulmonary nodule; Natural language processing; Artificial intelligence; Radiology reports; Follow-up; GUIDELINES; ADHERENCE; SYSTEM;
D O I
10.1016/j.resmer.2024.101136
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Background: Pulmonary nodules are a common incidental finding on chest Computed Tomography scans (CT), most of the time outside of lung cancer screening (LCS). We aimed to evaluate the number of incidental pulmonary nodules (IPN) found in 1 year in our hospital, as well as the follow-up (FUP) rate and the clinical and radiological features associated with FUP. Methods: We trained a Natural Language Processing (NLP) tool to identify the transcripts mentioning the presence of a pulmonary nodule, among a large population of patients from a French hospital. We extracted nodule characteristics using keyword analysis. NLP algorithm accuracy was determined through manual reading from a sample of our population. Electronic health database and medical record analysis by clinician allowed us to obtain information about FUP and cancer diagnoses. Results: In this retrospective observational study, we analyzed 101,703 transcripts corresponding to the entire CTs performed in 2020. We identified 1,991 (2 %) patients with an IPN. NLP accuracy for nodule detection in CT reports was 99 %. Only 41 % received a FUP between January 2020 and December 2021. Patient age, nodule size, and the mention of the nodule in the impression part were positively associated with FUP, while nodules diagnosed in the context of COVID-19 were less followed. 36 (2 %) lung cancers were subsequently diagnosed, with 16 (45 %) at a non-metastatic stage. Conclusions: We identified a high prevalence of IPN with a low FUP rate, encouraging the implementation of IPN management program. We also highlighted the potential of NLP for database analysis in clinical research. (c) 2024 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
引用
收藏
页数:8
相关论文
共 27 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]   Incidental Pulmonary Nodules Reported on CT Abdominal Imaging: Frequency and Factors Affecting Inclusion in the Hospital Discharge Summary [J].
Bates, Ruth ;
Plooster, Corbin ;
Croghan, Ivana ;
Schroeder, Darrell ;
McCoy, Christopher .
JOURNAL OF HOSPITAL MEDICINE, 2017, 12 (06) :454-457
[3]  
Blagev Denitza P, 2016, J Am Coll Radiol, V13, pR18, DOI 10.1016/j.jacr.2015.12.008
[4]   This Week in the Journal [J].
de Koning, H. J. ;
van der Aalst, C. M. ;
de Jong, P. A. ;
Scholten, E. T. ;
Nackaerts, K. ;
Heuvelmans, M. A. ;
Lammers, J. -W. J. ;
Weenink, C. ;
Yousaf-Khan, U. ;
Horeweg, N. ;
van't Westeinde, S. ;
Prokop, M. ;
Mali, W. P. ;
Hoesein, F. A. A. Mohamed ;
van Ooijen, P. M. A. ;
Aerts, J. G. J. V. ;
den Bakker, M. A. ;
Thunnissen, E. ;
Verschakelen, J. ;
Vliegenthart, R. ;
Walter, J. E. ;
ten Haaf, K. ;
Groen, H. J. M. ;
Oudkerk, M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (06) :503-513
[5]  
Debieuvre D, 2022, LANCET REG HEALTH-EU, V22, DOI 10.1016/j.lanepe.2022.100492
[6]  
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
[7]   Improvement in Follow-up Imaging With a Patient Tracking System and Computerized Registry for Lung Nodule Management [J].
Dyer, Debra S. ;
Zelarney, Pearlanne T. ;
Carr, Laurie L. ;
Kern, Elizabeth O. .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2021, 18 (07) :937-946
[8]   ESR paper on structured reporting in radiology [J].
Neri E. ;
Brady A.P. ;
Gibaud B. ;
Visser J.J. ;
Goldberg S.N. ;
Pyatigorskaya N. .
INSIGHTS INTO IMAGING, 2018, 9 (01) :1-7
[9]   Quality Management of Pulmonary Nodule Radiology Reports Based on Natural Language Processing [J].
Fei, Xiaolu ;
Chen, Pengyu ;
Wei, Lan ;
Huang, Yue ;
Xin, Yi ;
Li, Jia .
BIOENGINEERING-BASEL, 2022, 9 (06)
[10]   Primary Care Providers and a System Problem A Qualitative Study of Clinicians Caring for Patients With Incidental Pulmonary Nodules [J].
Golden, Sara E. ;
Wiener, Renda Soylemez ;
Sullivan, Donald ;
Ganzini, Linda ;
Slatore, Christopher G. .
CHEST, 2015, 148 (06) :1422-1429