When is the discrete Weibull distribution infinitely divisible?

被引:0
作者
Kreer, Markus [1 ]
Kizilersu, Ayse [2 ]
Thomas, Anthony W. [3 ]
机构
[1] Feldbergschule, Oberhochstadter Str 20, D-61440 Oberursel, Germany
[2] Adelaide Univ, Special Res Ctr Subatom Struct Matter CSSM, Sch Phys Sci, Dept Phys, Adelaide, SA 5005, Australia
[3] Adelaide Univ, Dept Phys, CSSM, Adelaide, SA 5005, Australia
关键词
Discrete Weibull distribution; Infinite divisibility; Log-convexity; Compound distribution; L & eacute; vy process;
D O I
10.1016/j.spl.2024.110238
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For the discrete Weibull probability distribution we prove that it is only infinitely divisible if the shape parameter lies in the range 0 < beta <= 1. The proof is based on some results of Steutel and van Harn (2004). For this case we construct the corresponding compound Poisson distribution and thus the related Levy process.
引用
收藏
页数:5
相关论文
共 19 条
  • [1] Infinite divisibility of random variables and their integer parts
    Bondesson, L
    Kristiansen, GK
    Steutel, FW
    [J]. STATISTICS & PROBABILITY LETTERS, 1996, 28 (03) : 271 - 278
  • [2] de Finetti B., 1929, Rend. Acad. Lincei, V10, P548
  • [3] The Discrete Weibull Distribution: An Alternative for Correlated Counts with Confirmation for Microbial Counts in Water
    Englehardt, James D.
    Li, Ruochen
    [J]. RISK ANALYSIS, 2011, 31 (03) : 370 - 381
  • [4] Feller William, 1968, An Introduction to Probability Theory and Its Applications
  • [5] When is the Conway-Maxwell-Poisson distribution infinitely divisible?
    Geng, Xi
    Xia, Aihua
    [J]. STATISTICS & PROBABILITY LETTERS, 2022, 181
  • [6] Ghorbani H, 2006, S AFR STAT J, V40, P75
  • [7] Khinchin A.Y., 1937, Mat. Sb, V44, P79
  • [8] Kizilersu A, 2018, Significance, V15, P10, DOI DOI 10.1111/J.1740-9713.2018.01123.X
  • [9] Kolmogorov A.N, 1932, Rend. Acad. Lincei, V15, P866
  • [10] Levy P, 1934, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, V3, P337