Some properties of generalized cluster algebras of geometric type

被引:0
作者
Huang, Junyuan [1 ]
Chen, Xueqing [2 ]
Xu, Fan [3 ]
Ding, Ming [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Univ Wisconsin, Dept Math, 800 W Main St, Whitewater, WI 53190 USA
[3] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Generalized cluster algebra; Cluster variable; Generalized projective cluster; variable; Standard monomial;
D O I
10.1016/j.jalgebra.2024.07.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the lower bound algebras generated by the generalized projective cluster variables of acyclic generalized cluster algebras of geometric type. We prove that this lower bound algebra coincides with the corresponding generalized cluster algebra under the coprimality condition. As a corollary, we obtain the dual PBW bases of these generalized cluster algebras. Moreover, we show that if the standard monomials of a generalized cluster algebra of geometric type are linearly independent, then the directed graph associated to the initial generalized seed of this algebra does not have 3-cycles. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar
引用
收藏
页码:270 / 290
页数:21
相关论文
共 16 条
  • [1] Generalized quantum cluster algebras: The Laurent phenomenon and upper bounds
    Bai, Liqian
    Chen, Xueqing
    Ding, Ming
    Xu, Fan
    [J]. JOURNAL OF ALGEBRA, 2023, 619 : 298 - 322
  • [2] On the Generalized Cluster Algebras of Geometric Type
    Bai, Liqian
    Chen, Xueqing
    Ding, Ming
    Xu, Fan
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [3] Cluster algebras generated by projective cluster variables
    Baur, Karin
    Nasr-Isfahani, Alireza
    [J]. JOURNAL OF ALGEBRA, 2023, 627 : 1 - 42
  • [4] Cluster algebras III: Upper bounds and double Bruhat cells
    Berenstein, A
    Fomin, S
    Zelevinsky, A
    [J]. DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) : 1 - 52
  • [5] On some combinatorial properties of generalized cluster algebras
    Cao, Peigen
    Li, Fang
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (08)
  • [6] Some conjectures on generalized cluster algebras via the cluster formula and D-matrix pattern
    Cao, Peigen
    Li, Fang
    [J]. JOURNAL OF ALGEBRA, 2018, 493 : 57 - 78
  • [7] Teichmuller Spaces of Riemann Surfaces with Orbifold Points of Arbitrary Order and Cluster Variables
    Chekhov, Leonid
    Shapiro, Michael
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (10) : 2746 - 2772
  • [8] Some elementary properties of Laurent phenomenon algebras
    Du, Qiuning
    Li, Fang
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (08): : 3019 - 3041
  • [9] Cluster algebras II: Finite type classification
    Fomin, S
    Zelevinsky, A
    [J]. INVENTIONES MATHEMATICAE, 2003, 154 (01) : 63 - 121
  • [10] Cluster algebras I: Foundations
    Fomin, S
    Zelevinsky, A
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) : 497 - 529