Stabilization and improvement of the convergence of hybrid-Trefftz stress elements for plate bending analysis

被引:2
作者
de Freitas, J. A. Teixeira [1 ]
Tiago, C. [2 ]
Pereira, E. M. B. R. [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
[2] Univ Lisbon, Inst Super Tecn, CERIS, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
关键词
Hybrid-Trefftz finite elements; Kirchhoff and Mindlin-Reissner plate bending; Boundary layer effects; FINITE-ELEMENT;
D O I
10.1016/j.compstruc.2024.107519
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The polynomial boundary basis usually applied in the implementation of hybrid-Trefftz stress elements for plate bending is extended to render its rate of convergence insensitive to the shear-to-bending stiffness ratio of the plate. The boundary basis is also extended to improve the accuracy of the element in the modelling of boundary layer effects and of singular stress fields caused by wedge effects. Numerical testing problems are selected to illustrate and validate the effect of the proposed extensions on the stabilization and improvement of finite element solutions. The solutions modelling boundary layer effects in Mindlin-Reissner plates are used to recover the equivalent shear and corner force concepts of the Kirchhoff plate bending model.
引用
收藏
页数:14
相关论文
共 23 条
[1]  
Bathe Klaus-Jurgen, 2006, Finite Element Procedures
[2]   HIGHER-ORDER MITC GENERAL SHELL ELEMENTS [J].
BUCALEM, ML ;
BATHE, KJ .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1993, 36 (21) :3729-3754
[3]   Hybrid displacement function element method: a simple hybrid-Trefftz stress element method for analysis of Mindlin-Reissner plate [J].
Cen, Song ;
Shang, Yan ;
Li, Chen-Feng ;
Li, Hong-Guang .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 98 (03) :203-234
[4]   An isogeometric method for the Reissner-Mindlin plate bending problem [J].
da Veiga, L. Beirao ;
Buffa, A. ;
Lovadina, C. ;
Martinelli, M. ;
Sangalli, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 209 :45-53
[5]  
de Freitas JAT, 1999, COMPUT MECH, V23, P488
[6]   POWERFUL FINITE-ELEMENT FOR PLATE BENDING [J].
JIROUSEK, J ;
LEON, N .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1977, 12 (01) :77-96
[7]  
Kirchhoff G., 1850, Journal fur die Reine und Angewandte Mathematik, V40, P51, DOI DOI 10.1515/CRLL.1850.40.51
[8]  
MINDLIN RD, 1951, J APPL MECH-T ASME, V18, P31
[9]   Comparison of high-order continuous and hybridizable discontinuous Galerkin methods for incompressible fluid flow problems [J].
Paipuri, Mahendra ;
Fernandez-Mendez, Sonia ;
Tiago, Carlos .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 153 :35-58
[10]  
Pereira EBR, 1999, INNOVATIVE COMPUTATIONAL METHODS FOR STRUCTURAL MECHANICS, P97, DOI 10.4203/csets.1.5