Quantum scalar field on fuzzy de Sitter space. Part I. Field modes and vacua

被引:0
作者
Brkic, Bojana [1 ]
Buric, Ilija [2 ,3 ]
Buric, Maja [1 ]
Latas, Dusko [1 ]
机构
[1] Univ Belgrade, Fac Phys, Studentski trg 12, Belgrade 11001, Serbia
[2] Univ Pisa, Dept Phys, Largo B Pontecorvo 3, I-56127 Pisa, Italy
[3] INFN, Largo B Pontecorvo 3, I-56127 Pisa, Italy
基金
欧盟地平线“2020”;
关键词
de Sitter space; Non-Commutative Geometry; Scale and Conformal Symmetries;
D O I
10.1007/JHEP10(2024)018
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study a scalar field on a noncommutative model of spacetime, the fuzzy de Sitter space, which is based on the algebra of the de Sitter group SO(1, d) and its unitary irreducible representations. We solve the Klein-Gordon equation in d = 2, 4 and show, using a specific choice of coordinates and operator ordering, that all commutative field modes can be promoted to solutions of the fuzzy Klein-Gordon equation. To explore completeness of this set of modes, we specify a Hilbert space representation and study the matrix elements (integral kernels) of a scalar field: in this way the complete set of solutions of the fuzzy Klein-Gordon equation is found. The space of noncommutative solutions has more degrees of freedom than the commutative one, whenever spacetime dimension is d > 2. In four dimensions, the new non-geometric, internal modes are parametrised by S-2 x W, where W is a discrete matrix space. Our results pave the way to analysis of quantum field theory on the fuzzy de Sitter space.
引用
收藏
页数:41
相关论文
共 50 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]   Planck 2018 results: VI. Cosmological parameters [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battye, R. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Challinor, A. ;
Chiang, H. C. ;
Chluba, J. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[3]   Noncommutative inflation [J].
Alexander, S ;
Brandenberger, R ;
Magueijo, J .
PHYSICAL REVIEW D, 2003, 67 (08)
[4]   VACUUM STATES IN DE-SITTER SPACE [J].
ALLEN, B .
PHYSICAL REVIEW D, 1985, 32 (12) :3136-3149
[5]   Masslessness in n-dimensions [J].
Angelopoulos, E ;
Laoues, M .
REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (03) :271-299
[6]   MASSLESS PARTICLES, CONFORMAL-GROUP, AND DE-SITTER UNIVERSE [J].
ANGELOPOULOS, E ;
FLATO, M ;
FRONSDAL, C ;
STERNHEIMER, D .
PHYSICAL REVIEW D, 1981, 23 (06) :1278-1289
[7]  
[Anonymous], 1964, INT SERIES PURE APPL
[8]  
[Anonymous], 2018, Noncommutative Cosmology, DOI [DOI 10.1142/10335, 10.1142/10335]
[9]   Noncommutative geometry and cosmology [J].
Barbosa, GD ;
Pinto-Neto, N .
PHYSICAL REVIEW D, 2004, 70 (10) :103512-1
[10]   IRREDUCIBLE UNITARY REPRESENTATIONS OF THE LORENTZ GROUP [J].
BARGMANN, V .
ANNALS OF MATHEMATICS, 1947, 48 (03) :568-640