Sliding mode observer-based model predictive tracking control for Mecanum-wheeled mobile robot

被引:4
|
作者
Wang, Dongliang [1 ,2 ]
Gao, Yong [3 ,4 ]
Wei, Wu [3 ,4 ]
Yu, Qiuda [3 ,4 ]
Wei, Yuhai [3 ,4 ]
Li, Wenji [1 ,2 ]
Fan, Zhun [5 ]
机构
[1] Shantou Univ, Sch Dept Elect & Informat Engn, Shantou 515063, Guangdong, Peoples R China
[2] Shantou Univ, Key Lab Digital Signal & Image Proc Guangdong Prov, Shantou 515063, Guangdong, Peoples R China
[3] South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
[4] Minist Educ, Key Lab Autonomous Syst & Networked Control, Guangzhou 510640, Guangdong, Peoples R China
[5] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen 518038, Guangdong, Peoples R China
关键词
Mecanum-wheeled mobile robot; Model predictive control; Sliding mode observer; Trajectory tracking; EXTENDED STATE OBSERVER; DESIGN; SYSTEMS;
D O I
10.1016/j.isatra.2024.05.050
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel adaptive variable power sliding mode observer-based model predictive control (AVPSMO-MPC) method for the trajectory tracking of a Mecanum-wheeled mobile robot (MWMR) with external disturbances and model uncertainties. First, in the absence of disturbances and uncertainties, a model predictive controller that considers various physical constraints is designed based on the nominal dynamics model of the MWMR, which can transform the tracking problem into a constrained quadratic programming (QP) problem to solve the optimal control inputs online. Subsequently, to improve the anti-jamming ability of the MWMR, an AVPSMO is designed as a feedforward compensation controller to suppress the effects of external disturbances and model uncertainties during the actual motion of the MWMR, and the stability of the AVPSMO is proved via Lyapunov theory. The proposed AVPSMO-MPC method can achieve precise tracking control while ensuring that the constraints of MWMR are not violated in the presence of disturbances and uncertainties. Finally, comparative simulation cases are presented to demonstrate the effectiveness and robustness of the proposed method.
引用
收藏
页码:51 / 61
页数:11
相关论文
共 50 条
  • [21] Observer-Based Trajectory Tracking Control of Nonholonomic Wheeled Mobile Robots
    Yan, Lixia
    Ma, Baoli
    Jia, Yingmin
    Jia, Yuxin
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2024, 32 (03) : 1114 - 1121
  • [22] Robust tracking control for wheeled mobile robot based on extended state observer
    Yang, Hongjiu
    Fan, Xiaozhao
    Xia, Yuanqing
    Hua, Changchun
    ADVANCED ROBOTICS, 2016, 30 (01) : 68 - 78
  • [23] Observer-Based Model-Free Adaptive Sliding Mode Predictive Control
    Ren, Bing
    Bao, Guangqing
    IEEE ACCESS, 2023, 11 : 59357 - 59367
  • [24] Finite-time adaptive trajectory tracking control based on sliding mode for Wheeled Mobile Robot
    Moudoud, Brahim
    Aissaoui, Hicham
    Diany, Mohammed
    2021 18TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2021, : 1148 - 1153
  • [25] Observer-based adaptive dynamic sliding mode control for automatic clutch position tracking
    Ding, Jingang
    Jiao, Xiaohong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2023,
  • [26] Extended state observer-based trajectory tracking control of a wheeled mobile robot with one unpowered trailer
    Yang, Hongjiu
    Dang, Ran
    Li, Peng
    ASIAN JOURNAL OF CONTROL, 2025, 27 (02) : 1008 - 1019
  • [27] A Trajectory Tracking Method of Mobile Robot Based on Sliding Mode Control and Disturbance Observer
    Zhang, Yang
    Wang, Huiming
    Wang, Xuechuang
    Feng, Yue
    INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND ROBOTICS 2021, 2021, 11884
  • [28] Trajectory Tracking Control of a Mobile Robot with Model Predictive Controller and Observer
    Dogruer, C. U.
    2019 IEEE 7TH INTERNATIONAL CONFERENCE ON CONTROL, MECHATRONICS AND AUTOMATION (ICCMA 2019), 2019, : 179 - 184
  • [30] Extended State Observer-Based Sliding Mode Control of an Omnidirectional Mobile Robot With Friction Compensation
    Ren, Chao
    Li, Xiaohan
    Yang, Xuebo
    Ma, Shugen
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (12) : 9480 - 9489