Deep Learning-Based Detection and Classification of Bone Lesions on Staging Computed Tomography in Prostate Cancer: A Development Study

被引:2
作者
Belue, Mason J. [1 ]
Harmon, Stephanie A. [1 ]
Yang, Dong [2 ]
An, Julie Y. [3 ]
Gaur, Sonia [4 ]
Law, Yan Mee [5 ]
Turkbey, Evrim [6 ]
Xu, Ziyue [2 ]
Tetreault, Jesse [2 ]
Lay, Nathan S. [1 ]
Yilmaz, Enis C. [1 ]
Phelps, Tim E. [1 ]
Simon, Benjamin [1 ]
Lindenberg, Liza [1 ]
Mena, Esther [1 ]
Pinto, Peter A. [7 ]
Bagci, Ulas [8 ]
Wood, Bradford J. [6 ,9 ]
Citrin, Deborah E. [10 ]
Dahut, William L. [11 ]
Madan, Ravi A. [11 ]
Gulley, James L. [12 ]
Xu, Daguang [2 ]
Choyke, Peter L. [1 ]
Turkbey, Baris [1 ]
机构
[1] NCI, Mol Imaging Branch, NIH, 10 Ctr Dr,MSC 1182,Bldg 10,Room B3B85, Bethesda, MD 20892 USA
[2] NVIDIA Corp, Santa Clara, CA USA
[3] Univ Calif San Diego, Dept Radiol, San Diego, CA USA
[4] Massachusetts Gen Hosp, Dept Radiol, Boston, MA USA
[5] Singapore Gen Hosp, Dept Radiol, Singapore, Singapore
[6] NIH, Clin Ctr, Dept Radiol, Bethesda, MD USA
[7] NCI, Urol Oncol Branch, NIH, Bethesda, MD USA
[8] Northwestern Univ, Radiol & Biomed Engn Dept, Feinberg Sch Med, Chicago, IL USA
[9] NCI, Ctr Intervent Oncol, NIH, Bethesda, MD USA
[10] NCI, Radiat Oncol Branch, NIH, Bethesda, MD USA
[11] NCI, Genitourinary Malignancies Branch, NIH, Bethesda, MD USA
[12] NCI, Ctr Immuno Oncol, NIH, Bethesda, MD USA
关键词
Prostate cancer; Bone metastasis; Computed tomography; Oligometastatic; Artificial intelligence; Deep learning; MONAI; METASTASES; SEGMENTATION;
D O I
10.1016/j.acra.2024.01.009
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: Efficiently detecting and characterizing metastatic bone lesions on staging CT is crucial for prostate cancer (PCa) care. However, it demands significant expert time and additional imaging such as PET/CT. We aimed to develop an ensemble of two automated deep learning AI models for 1) bone lesion detection and segmentation and 2) benign vs. metastatic lesion classification on staging CTs and to compare its performance with radiologists. Materials and Methods: This retrospective study developed two AI models using 297 staging CT scans (81 metastatic) with 4601 benign and 1911 metastatic lesions in PCa patients. Metastases were validated by follow-up scans, bone biopsy, or PET/CT. Segmentation AI (3DAISeg) was developed using the lesion contours delineated by a radiologist. 3DAISeg performance was evaluated with the Dice similarity coefficient, and classification AI (3DAIClass) performance on AI and radiologist contours was assessed with F1score and accuracy. Training/validation/testing data partitions of 70:15:15 were used. A multi -reader study was performed with two junior and two senior radiologists within a subset of the testing dataset ( n = 36). Results: In 45 unseen staging CT scans (12 metastatic PCa) with 669 benign and 364 metastatic lesions, 3DAISeg detected 73.1% of metastatic (266/364) and 72.4% of benign lesions (484/669). Each scan averaged 12 extra segmentations (range: 1-31). All metastatic scans had at least one detected metastatic lesion, achieving a 100% patient -level detection. The mean Dice score for 3DAISeg was 0.53 (median: 0.59, range: 0-0.87). The F1 for 3DAIClass was 94.8% (radiologist contours) and 92.4% (3DAISeg contours), with a median false positive of 0 (range: 0-3). Using radiologist contours, 3DAIClass had PPV and NPV rates comparable to junior and senior radiologists: PPV (semi -automated approach AI 40.0% vs. Juniors 32.0% vs. Seniors 50.0%) and NPV (AI 96.2% vs. Juniors 95.7% vs. Seniors 91.9%). When using 3DAISeg, 3DAIClass mimicked junior radiologists in PPV (pure -AI 20.0% vs. Juniors 32.0% vs. Seniors 50.0%) but surpassed seniors in NPV (pure -AI 93.8% vs. Juniors 95.7% vs. Seniors 91.9%). Conclusion: Our lesion detection and classification AI model performs on par with junior and senior radiologists in discerning benign and metastatic lesions on staging CTs obtained for PCa.
引用
收藏
页码:2424 / 2433
页数:10
相关论文
共 30 条
[1]   Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases [J].
Belal, Sarah Lindgren ;
Sadik, May ;
Kaboteh, Reza ;
Enqvist, Olof ;
Ulen, Johannes ;
Poulsen, Mads H. ;
Simonsen, Jane ;
Hoilund-Carlsen, Poul F. ;
Edenbrandt, Lars ;
Tragardh, Elin .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 113 :89-95
[2]   3D skeletal uptake of 18F sodium fluoride in PET/CT images is associated with overall survival in patients with prostate cancer [J].
Belal, Sarah Lindgren ;
Sadik, May ;
Kaboteh, Reza ;
Hasani, Nezar ;
Enqvist, Olof ;
Svarm, Linus ;
Kahl, Fredrik ;
Simonsen, Jane ;
Poulsen, Mads H. ;
Ohlsson, Mattias ;
Hoilund-Carlsen, Poul F. ;
Edenbrandt, Lars ;
Tragardh, Elin .
EJNMMI RESEARCH, 2017, 7
[3]   Targeting bone metastases in prostate cancer: improving clinical outcome [J].
Body, Jean-Jacques ;
Casimiro, Sandra ;
Costa, Luis .
NATURE REVIEWS UROLOGY, 2015, 12 (06) :340-356
[4]   Artificial intelligence-based detection of lymph node metastases by PET/CT predicts prostate cancer-specific survival [J].
Borrelli, Pablo ;
Larsson, Mans ;
Ulen, Johannes ;
Enqvist, Olof ;
Tragardh, Elin ;
Poulsen, Mads Hvid ;
Mortensen, Mike Allan ;
Kjolhede, Henrik ;
Hoilund-Carlsen, Poul Flemming ;
Edenbrandt, Lars .
CLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING, 2021, 41 (01) :62-67
[5]   Lesion-Based Bone Metastasis Detection in Chest Bone Scintigraphy Images of Prostate Cancer Patients Using Pre-Train, Negative Mining, and Deep Learning [J].
Cheng, Da-Chuan ;
Hsieh, Te-Chun ;
Yen, Kuo-Yang ;
Kao, Chia-Hung .
DIAGNOSTICS, 2021, 11 (03)
[6]   Bone metastases [J].
Coleman, Robert E. ;
Croucher, Peter I. ;
Padhani, Anwar R. ;
Clezardin, Philippe ;
Chow, Edward ;
Fallon, Marie ;
Guise, Theresa ;
Colangeli, Simone ;
Capanna, Rodolfo ;
Costa, Luis .
NATURE REVIEWS DISEASE PRIMERS, 2020, 6 (01)
[7]   Benign Bone Tumors: An Overview of What We Know Today [J].
De Salvo, Sara ;
Pavone, Vito ;
Coco, Sebastiano ;
Dell'Agli, Eleonora ;
Blatti, Chiara ;
Testa, Gianluca .
JOURNAL OF CLINICAL MEDICINE, 2022, 11 (03)
[8]   Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part I: Introduction, Risk Assessment, Staging, and Risk-Based Management [J].
Eastham, James A. ;
Auffenberg, Gregory B. ;
Barocas, Daniel A. ;
Chou, Roger ;
Crispino, Tony ;
Davis, John W. ;
Eggener, Scott ;
Horwitz, Eric M. ;
Kane, Christopher J. ;
Kirkby, Erin ;
Lin, Daniel W. ;
McBride, Sean M. ;
Morgans, Alicia K. ;
Pierorazio, Phillip M. ;
Rodrigues, George ;
Wong, William W. ;
Boorjian, Stephen A. .
JOURNAL OF UROLOGY, 2022, 208 (01) :10-18
[9]   Clinically Localized Prostate Cancer: AUA/ASTRO Guideline. Part III: Principles of Radiation and Future Directions [J].
Eastham, James A. ;
Auffenberg, Gregory B. ;
Barocas, Daniel A. ;
Chou, Roger ;
Crispino, Tony ;
Davis, John W. ;
Eggener, Scott ;
Horwitz, Eric M. ;
Kane, Christopher J. ;
Kirkby, Erin ;
Lin, Daniel W. ;
McBride, Sean M. ;
Morgans, Alicia K. ;
Pierorazio, Phillip M. ;
Rodrigues, George ;
Wong, William W. ;
Boorjian, Stephen A. .
JOURNAL OF UROLOGY, 2022, 208 (01) :26-33
[10]   Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part II: Principles of Active Surveillance, Principles of Surgery, and Follow-Up [J].
Eastham, James A. ;
Auffenberg, Gregory B. ;
Barocas, Daniel A. ;
Chou, Roger ;
Crispino, Tony ;
Davis, John W. ;
Eggener, Scott ;
Horwitz, Eric M. ;
Kane, Christopher J. ;
Kirkby, Erin ;
Lin, Daniel W. ;
McBride, Sean M. ;
Morgans, Alicia K. ;
Pierorazio, Phillip M. ;
Rodrigues, George ;
Wong, William W. ;
Boorjian, Stephen A. .
JOURNAL OF UROLOGY, 2022, 208 (01) :19-25