Hierarchical stacked spatiotemporal self-attention network for sea surface temperature forecasting

被引:1
作者
Zhao, Yuxin [1 ]
Yang, Dequan [1 ]
He, Jianxin [1 ]
Zhu, Kexin [1 ]
Deng, Xiong [1 ]
机构
[1] Harbin Engn Univ, Coll Intelligent Syst Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
关键词
Spatiotemporal forecasting; Sea surface temperature; Self-attention mechanism; Small-scale forecasting; OCEAN; SYSTEM; EARTH; MODEL;
D O I
10.1016/j.ocemod.2024.102427
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Sea surface temperature (SST) is a highly complex spatiotemporal variable, which stems from its susceptibility to non-linear dynamical processes and substantial spatiotemporal variability. In particular, accurately forecasting small-scale SST is a formidable challenge due to the compounded effects of diverse physical processes spanning across various scales. In this study, we employ deep learning methods to mine the ocean's evolutionary patterns, as the ocean's dynamic mechanisms are inherently embedded in spatiotemporal data. We propose a hierarchical stacked spatiotemporal self-attention mechanism (HSSSA) network architecture. The hierarchical stacked encoder-decoder architecture provides the capability for feature fusion and extraction at different scales. The spatial self-attention and temporal self-attention modules simultaneously focus on information from different spatial locations and time steps, allowing the exploration of spatiotemporal patterns in the complex dynamics of the ocean. The experiments are conducted on a high-resolution East China Sea dataset ( 1/10(degrees) x 1/10(degrees)) to demonstrate the forecast performance of the proposed model for refined ocean variables. The 15-day forecasts indicate that the HSSSA method outperforms the EOF-ARIMA and CNN-Transformer methods.
引用
收藏
页数:15
相关论文
共 53 条
[1]   Small-scale open ocean currents have large effects on wind wave heights [J].
Ardhuin, Fabrice ;
Gille, Sarah T. ;
Menemenlis, Dimitris ;
Rocha, Cesar B. ;
Rascle, Nicolas ;
Chapron, Bertrand ;
Gula, Jonathan ;
Molemaker, Jeroen .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2017, 122 (06) :4500-4517
[2]  
Bontempi G, 2013, LECT NOTES BUS INF P, V138, P62
[3]  
Chowdhary K. R., 2020, FUNDAMENTALS ARTIFIC, DOI DOI 10.1007/978-81-322-3972-7_19
[4]  
Chtirkova B., 2020, EGU GEN ASS C, P9347
[5]   Air-Sea Fluxes With a Focus on Heat and Momentum [J].
Cronin, Meghan F. ;
Gentemann, Chelle L. ;
Edson, James ;
Ueki, Iwao ;
Bourassa, Mark ;
Brown, Shannon ;
Clayson, Carol Anne ;
Fairall, Chris W. ;
Farrar, J. Thomas ;
Gille, Sarah T. ;
Gulev, Sergey ;
Josey, Simon A. ;
Kato, Seiji ;
Katsumata, Masaki ;
Kent, Elizabeth ;
Krug, Marjolaine ;
Minnett, Peter J. ;
Parfitt, Rhys ;
Pinker, Rachel T. ;
Stackhouse, Paul W., Jr. ;
Swart, Sebastiaan ;
Tomita, Hiroyuki ;
Vandemark, Douglas ;
AWeller, Robert ;
Yoneyama, Kunio ;
Yu, Lisan ;
Zhang, Dongxiao .
FRONTIERS IN MARINE SCIENCE, 2019, 6
[6]   Understanding the Earth as a Complex System - recent advances in data analysis and modelling in Earth sciences [J].
Donner, R. ;
Barbosa, S. ;
Kurths, J. ;
Marwan, N. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 174 :1-9
[7]   Prediction of breaking wave height by using artificial neural network-based approach [J].
Duong, Nga Thanh ;
Tran, Khiem Quang ;
Luu, Loc Xuan ;
Tran, Linh Hoang .
OCEAN MODELLING, 2023, 182
[8]   Attention in Natural Language Processing [J].
Galassi, Andrea ;
Lippi, Marco ;
Torroni, Paolo .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (10) :4291-4308
[9]  
Glorot X., 2010, P 13 INT C ART INT S, P249
[10]   DeepOcean: A General Deep Learning Framework for Spatio-Temporal Ocean Sensing Data Prediction [J].
Gou, Yu ;
Zhang, Tong ;
Liu, Jun ;
Wei, Li ;
Cui, Jun-Hong .
IEEE ACCESS, 2020, 8 :79192-79202