A nonlocal Kirchhoff diffusion problem with singular potential and logarithmic nonlinearity

被引:0
作者
Tan, Zhong [1 ,2 ]
Yang, Yi [1 ]
机构
[1] Xiamen Univ, Shenzhen Res Inst, Shenzhen, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
基金
中国国家自然科学基金;
关键词
blow-up; fractional parabolic problem of Kirchhoff type; logarithmic nonlinearity; nonlocal integro-differential operator; singular potential; PSEUDO-PARABOLIC EQUATIONS; BLOW-UP; GLOBAL EXISTENCE; LOCAL EXISTENCE; INSTABILITY;
D O I
10.1002/mma.10451
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the following fractional Kirchhoff-type pseudo parabolic equation driven by a nonlocal integro- differential operator L-K: u(t)/vertical bar x vertical bar|(s) + M([u](s)(2))L (K)u + L (K)u(t) = vertical bar u vertical bar(p-2)u log vertical bar u vertical bar, where [u](s) represents the Gagliardo seminorm of u. Instead of imposing specific assumptions on the Kirchhoff function, we introduce a more general sense to establish the local existence ofweak solutions. Moreover, via the sharp fractional Hardy inequality, the decay estimates for global weak solutions, the blow-up criterion, blow-up rate, and the upper and lower bounds of the blow-up time are derived. Lastly, we discuss the global existence and finite time blow-up results with high initial energy.
引用
收藏
页码:2561 / 2583
页数:23
相关论文
共 37 条
  • [1] Adams R.A., 2003, Sobolev Spaces
  • [2] On Cauchy problem for fractional parabolic-elliptic Keller-Segel model
    Anh Tuan Nguyen
    Nguyen Huy Tuan
    Yang, Chao
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01) : 97 - 116
  • [3] Applebaum D., 2004, Notices of the American Mathematical Society, V51, P1336
  • [4] Bisci GM, 2016, ENCYCLOP MATH APPL, V162
  • [5] Caffarelli L., 2012, Nonlinear partial differential equations, Abel Symposia, V7, P37, DOI DOI 10.1007/978-3-642-25361-4
  • [6] Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity
    Chen, Hua
    Tian, Shuying
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (12) : 4424 - 4442
  • [7] Global Existence and Blow-Up for a Parabolic Problem of Kirchhoff Type with Logarithmic Nonlinearity
    Ding, Hang
    Zhou, Jun
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03) : 1651 - 1707
  • [8] Global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem
    Ding, Hang
    Zhou, Jun
    [J]. NONLINEARITY, 2020, 33 (11) : 6099 - 6133
  • [9] Local existence, global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem*
    Ding, Hang
    Zhou, Jun
    [J]. NONLINEARITY, 2020, 33 (03) : 1046 - 1063
  • [10] Infinitely many localized semiclassical states for nonlinear Kirchhoff-type equation
    Feng, Binhua
    Wang, Da-Bin
    Wu, Zhi-Guo
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)