Dissipationless topological quantum computation for Majorana objects in the sparse-dense mixed encoding process

被引:0
作者
Zhan, Ye-Min [1 ,2 ]
Mao, Guan-Dong [1 ,2 ]
Chen, Yu-Ge [3 ]
Yu, Yue [1 ,2 ]
Luo, Xi [4 ]
机构
[1] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[4] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
关键词
NON-ABELIAN STATISTICS; SUPERCONDUCTOR; FERMIONS; STATES; ANYONS;
D O I
10.1103/PhysRevA.110.022609
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Topological quantum computation based on Majorana objects is subject to a significant challenge because at least some of the two-qubit quantum gates rely on the fermion (either charge or spin) parity of the qubits. This dependency renders the quantum operations involving these gates probabilistic when attempting to advance quantum processes within the quantum circuit model. Such an approach leads to significant information loss whenever measurements yield the undesired fermion parity. To resolve the problem of wasting information, we devise topological operations that allow for the nondissipative correction of information from undesired fermion parity to the desired one. We will use the sparse-dense mixed encoding process for the controlled-NOT gate as an example to explain how corrections can be implemented without affecting the quantum information carried by the computational qubits. This correction process can be applied to either the undesired input qubits or the fermion parity-dependent quantum gates, and it works for both Majorana-zero-mode-based and Majorana-edgemode-based topological quantum computation.
引用
收藏
页数:10
相关论文
共 80 条
  • [1] Alicea J, 2011, NAT PHYS, V7, P412, DOI [10.1038/nphys1915, 10.1038/NPHYS1915]
  • [2] ELEMENTARY GATES FOR QUANTUM COMPUTATION
    BARENCO, A
    BENNETT, CH
    CLEVE, R
    DIVINCENZO, DP
    MARGOLUS, N
    SHOR, P
    SLEATOR, T
    SMOLIN, JA
    WEINFURTER, H
    [J]. PHYSICAL REVIEW A, 1995, 52 (05): : 3457 - 3467
  • [3] Barkeshli M, 2015, Arxiv, DOI arXiv:1509.07135
  • [4] Charge detection enables free-electron quantum computation
    Beenakker, CWJ
    DiVincenzo, DP
    Emary, C
    Kindermann, M
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (02) : 020501 - 1
  • [5] Finite-bias visibility dependence in an electronic Mach-Zehnder interferometer
    Bieri, E.
    Weiss, M.
    Goektas, O.
    Hauser, M.
    Schoenenberger, C.
    Oberholzer, S.
    [J]. PHYSICAL REVIEW B, 2009, 79 (24):
  • [6] Measurement-only topological quantum computation
    Bonderson, Parsa
    Freedman, Michael
    Nayak, Chetan
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (01)
  • [7] A new universal and fault-tolerant quantum basis
    Boykin, PO
    Mor, T
    Pulver, M
    Roychowdhury, V
    Vatan, F
    [J]. INFORMATION PROCESSING LETTERS, 2000, 75 (03) : 101 - 107
  • [8] Universal quantum computation with the ν=5/2 fractional quantum Hall state
    Bravyi, S
    [J]. PHYSICAL REVIEW A, 2006, 73 (04):
  • [9] Quantum computation by spin-parity measurements with encoded spin qubits
    Brooks, Matthew
    Tahan, Charles
    [J]. PHYSICAL REVIEW B, 2023, 108 (03)
  • [10] Universal fault-tolerant measurement-based quantum computation
    Brown, Benjamin J.
    Roberts, Sam
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (03):