Artificial intelligence decision making tools in food metabolomics: Data fusion unravels synergies within the hazelnut ( Corylus avellana L.) metabolome and improves quality prediction

被引:3
作者
Squara, Simone [1 ]
Caratti, Andrea [1 ]
Fina, Angelica [1 ]
Liberto, Erica [1 ]
Koljancic, Nemanja [1 ,2 ]
Spanik, Ivan [2 ]
Genova, Giuseppe [3 ]
Castello, Giuseppe [3 ]
Bicchi, Carlo [1 ]
de Villiers, Andre [4 ]
Cordero, Chiara [1 ]
机构
[1] Univ Torino, Dipartimento Sci & Tecnol Farmaco, Via Pietro Giuria 9, I-10125 Turin, Italy
[2] Slovak Univ Technol Bratislava, Inst Analyt Chem, Fac Chem & Food Technol, Radlinskeho 9, Bratislava 81237, Slovakia
[3] Soremartec Italia Srl, Piazzale Ferrero 1, I-12051 Alba, Cuneo, Italy
[4] Stellenbosch Univ, Dept Chem & Polymer Sci, ZA-7602 Stellenbosch, Western Cape, South Africa
关键词
Corylus avellana L; LC-HRMS and GCxGC-TOF-MS data; Data fusion; Volatilome; Metabolome; Food quality prediction; 2-DIMENSIONAL GAS-CHROMATOGRAPHY; CHALLENGES; PHYTOCHEMICALS; IDENTIFICATION; VOLATILES; STRATEGY; NIR;
D O I
10.1016/j.foodres.2024.114873
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
This study investigates the metabolome of high-quality hazelnuts (Corylus avellana L.) by applying untargeted and targeted metabolome profiling techniques to predict industrial quality. Utilizing comprehensive twodimensional gas chromatography and liquid chromatography coupled with high-resolution mass spectrometry, the research characterizes the non-volatile (primary and specialized metabolites) and volatile metabolomes. Data fusion techniques, including low-level (LLDF) and mid-level (MLDF), are applied to enhance classification performance. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) reveal that geographical origin and postharvest practices significantly impact the specialized metabolome, while storage conditions and duration influence the volatilome. The study demonstrates that MLDF approaches, particularly supervised MLDF, outperform single-fraction analyses in predictive accuracy. Key findings include the identification of metabolites patterns causally correlated to hazelnut's quality attributes, of them aldehydes, alcohols, terpenes, and phenolic compounds as most informative. The integration of multiple analytical platforms and data fusion methods shows promise in refining quality assessments and optimizing storage and processing conditions for the food industry.
引用
收藏
页数:16
相关论文
共 67 条
  • [1] Detection of Fruit Pulp Adulteration Using Multivariate Analysis: Comparison of NIR, MIR and Data Fusion Performance
    Alamar, Priscila D.
    Carames, Elem T. S.
    Poppi, Ronei J.
    Pallone, Juliana A. L.
    [J]. FOOD ANALYTICAL METHODS, 2020, 13 (06) : 1357 - 1365
  • [2] Turkish tombul hazelnut (Corylus avellana L.).: 2.: Lipid characteristics and oxidative stability
    Alasalvar, C
    Shahidi, F
    Ohshima, T
    Wanasundara, U
    Yurttas, HC
    Liyanapathirana, CM
    Rodrigues, FB
    [J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2003, 51 (13) : 3797 - 3805
  • [3] Comparison of natural and roasted Turkish tombul hazelnut (Corylus avellana L.) volatiles and flavor by DHA/GC/MS and descriptive sensory analysis
    Alasalvar, C
    Shahidi, F
    Cadwallader, KR
    [J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2003, 51 (17) : 5067 - 5072
  • [4] Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects
    Alasalvar, Cesarettin
    Bolling, Bradley W.
    [J]. BRITISH JOURNAL OF NUTRITION, 2015, 113 : S68 - S78
  • [5] Towards a harmonized identification scoring system in LC-HRMS/MS based non-target screening (NTS) of emerging contaminants
    Alygizakis, Nikiforos
    Lestremau, Francois
    Gago-Ferrero, Pablo
    Gil-Solsona, Ruben
    Arturi, Katarzyna
    Hollender, Juliane
    Schymanski, Emma L.
    Dulio, Valeria
    Slobodnik, Jaroslav
    Thomaidis, Nikolaos S.
    [J]. TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2023, 159
  • [6] Data handling in data fusion: Methodologies and applications
    Azcarate, Silvana M.
    Rios-Reina, Rocio
    Amigo, Jose M.
    Goicoechea, Ector C.
    [J]. TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2021, 143
  • [7] Foodomics: A new approach in food quality and safety
    Balkir, Pinar
    Kemahlioglu, Kemal
    Yucel, Ufuk
    [J]. TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2021, 108 : 49 - 57
  • [8] Chemical profiling and multivariate data fusion methods for the identification of the botanical origin of honey
    Ballabio, Davide
    Robotti, Elisa
    Grisoni, Francesca
    Quasso, Fabio
    Bobba, Marco
    Vercelli, Serena
    Gosetti, Fabio
    Calabrese, Giorgio
    Sangiorgi, Emanuele
    Orlandi, Marco
    Marengo, Emilio
    [J]. FOOD CHEMISTRY, 2018, 266 : 79 - 89
  • [9] A MATLAB toolbox for Principal Component Analysis and unsupervised exploration of data structure
    Ballabio, Davide
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 149 : 1 - 9
  • [10] Classification tools in chemistry. Part 1: linear models. PLS-DA
    Ballabio, Davide
    Consonni, Viviana
    [J]. ANALYTICAL METHODS, 2013, 5 (16) : 3790 - 3798