MLE-Loss Driven Robust Hand Pose Estimation

被引:0
作者
Lou, Xudong [1 ]
Lin, Xin [2 ]
Zhu, Xiangxian [1 ]
Chen, Chen
机构
[1] Ningbo Preh Joyson Automot Elect Co Ltd, Ningbo 315100, Peoples R China
[2] Zhejiang Key Lab Automot Elect Intelligence, Ningbo 315100, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Heating systems; Pose estimation; Computational modeling; Training; Accuracy; Maximum likelihood estimation; Convolutional neural networks; Deep learning; Hand pose estimation; maximum likelihood estimation; heatmap; deep learning;
D O I
10.1109/ACCESS.2024.3429531
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a novel method for accurately estimating the 2D coordinates of hand keypoints from single static images, utilizing a sequential convolutional neural network optimized with Maximum Likelihood Estimation Loss. Unlike traditional heatmap-based techniques, our approach eliminates the need to generate label heatmaps and sidesteps the direct optimization of model parameters based on noisy labels. Instead, it concentrates on modeling the distribution of the discrepancies between predicted results and ground truth, rather than the potential presence of noisy labels, thus enabling the direct prediction of hand keypoint coordinates. Furthermore, we propose a sequential training and inference framework that consists of a deep convolutional backbone network and a multi-stage sequential network. Each stage of this network features similar structures, facilitating the progressive and precise prediction of hand keypoint coordinates. Our extensive experimental results demonstrate that our approach is both highly accurate and robust, outperforming mainstream methods under the experimental conditions detailed in this paper.
引用
收藏
页码:99794 / 99805
页数:12
相关论文
共 45 条
[1]   Hand pose estimation and tracking in real and virtual interaction: A review [J].
Ahmad, Ammar ;
Migniot, Cyrille ;
Dipanda, Albert .
IMAGE AND VISION COMPUTING, 2019, 89 :35-49
[2]   ControllerPose: Inside-Out Body Capture with VR Controller Cameras [J].
Ahuja, Karan ;
Shen, Vivian ;
Fang, Cathy Mengying ;
Riopelle, Nathan ;
Kong, Andy ;
Harrison, Chris .
PROCEEDINGS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI' 22), 2022,
[3]   FastHand: Fast monocular hand pose estimation on embedded systems [J].
An, Shan ;
Zhang, Xiajie ;
Wei, Dong ;
Zhu, Haogang ;
Yang, Jianyu ;
Tsintotas, Konstantinos A. .
JOURNAL OF SYSTEMS ARCHITECTURE, 2022, 122
[4]   Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields [J].
Cao, Zhe ;
Simon, Tomas ;
Wei, Shih-En ;
Sheikh, Yaser .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1302-1310
[5]   Pose guided structured region ensemble network for cascaded hand pose estimation [J].
Chen, Xinghao ;
Wang, Guijin ;
Guo, Hengkai ;
Zhang, Cairong .
NEUROCOMPUTING, 2020, 395 (395) :138-149
[6]   SHPR-Net: Deep Semantic Hand Pose Regression From Point Clouds [J].
Chen, Xinghao ;
Wang, Guijin ;
Zhang, Cairong ;
Kim, Tae-Kyun ;
Ji, Xiangyang .
IEEE ACCESS, 2018, 6 :43425-43439
[7]   Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation [J].
Chen, Yu ;
Shen, Chunhua ;
Wei, Xiu-Shen ;
Liu, Lingqiao ;
Yang, Jian .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :1221-1230
[8]   Learning Hand Articulations by Hallucinating Heat Distribution [J].
Choi, Chiho ;
Kim, Sangpil ;
Ramani, Karthik .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :3123-3132
[9]  
Chou CJ, 2018, ASIAPAC SIGN INFO PR, P17, DOI 10.23919/APSIPA.2018.8659538
[10]   Multi-Context Attention for Human Pose Estimation [J].
Chu, Xiao ;
Yang, Wei ;
Ouyang, Wanli ;
Ma, Cheng ;
Yuille, Alan L. ;
Wang, Xiaogang .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5669-5678