Edge server enhanced secure and privacy preserving federated learning

被引:1
|
作者
Xu, Yihang [1 ]
Mao, Yuxing [1 ]
Li, Jian [1 ]
Chen, Xueshuo [1 ]
Wu, Shunxin [1 ]
机构
[1] Chongqing Univ, State Key Lab Power Transmiss Equipment & Syst Sec, Chongqing, Peoples R China
关键词
Adversary detection; Edge computing; IoT-FL; Privacy preserving;
D O I
10.1016/j.comnet.2024.110465
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) has been smoothly embedded into current IoT edge computing architecture, and hatching advanced IoT-FL applications. While so, sensitive messages generated on terminal sides brings privacy issues; and vulnerable terminal devices are easy targets for Byzantine adversaries, they inject malicious data to manipulate the IoT-FL system. Now an inherent dilemma is, the privacy preserving requires anonymous indistinguishable individual characteristics, while the malicious adversary detection requires transparent distinguishable results. Existing fragmented schemes are not able to handle both problems coherently. This time, inherit our previous study, based on the IoT edge computing architecture, we utilize Homomorphic Encryption (HE) and Threshold Secret Sharing (SS) methods, propose a joint scheme (namely, Sec-IoTFL) for anonymous adversary detection. Specifically, we batch encode the clients' ' training result vectors (message) as polynomials, and split them as secret pieces with a unified SS key set; then edge server and cloud server joint deal with these secret pieces in a specialized flow, where Byzantine adversaries will be filtered out. The theoretical analysis and solid experimental results suggest, in our scheme, local sensitive data is well preserved, and malicious behavior is precisely screened. Comparing with traditional methods, our Sec-IoTFL scheme shows the superiority in accuracy and efficiency.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Privacy preserving and secure robust federated learning: A survey
    Han, Qingdi
    Lu, Siqi
    Wang, Wenhao
    Qu, Haipeng
    Li, Jingsheng
    Gao, Yang
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (13):
  • [2] PrivacyFL: A Simulator for Privacy-Preserving and Secure Federated Learning
    Mugunthan, Vaikkunth
    Peraire-Bueno, Anton
    Kagal, Lalana
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 3085 - 3092
  • [3] Fast Secure Aggregation for Privacy-Preserving Federated Learning
    Liu, Yanjun
    Qian, Xinyuan
    Li, Hongwei
    Hao, Meng
    Guo, Song
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3017 - 3022
  • [4] PASTEL: Privacy-Preserving Federated Learning in Edge Computing
    Elhattab, Fatima
    Bouchenak, Sara
    Boscher, Cedric
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2023, 7 (04):
  • [5] Privacy-Preserving Federated Edge Learning: Modeling and Optimization
    Liu, Tianyu
    Di, Boya
    Song, Lingyang
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (07) : 1489 - 1493
  • [6] PPeFL: Privacy-Preserving Edge Federated Learning With Local Differential Privacy
    Wang, Baocang
    Chen, Yange
    Jiang, Hang
    Zhao, Zhen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15488 - 15500
  • [7] Privacy-Preserving Machine Learning Using Federated Learning and Secure Aggregation
    Lia, Dragos
    Togan, Mihai
    PROCEEDINGS OF THE 2020 12TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI-2020), 2020,
  • [8] Toward Secure Weighted Aggregation for Privacy-Preserving Federated Learning
    He, Yunlong
    Yu, Jia
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 3475 - 3488
  • [9] Secure, privacy-preserving and federated machine learning in medical imaging
    Georgios A. Kaissis
    Marcus R. Makowski
    Daniel Rückert
    Rickmer F. Braren
    Nature Machine Intelligence, 2020, 2 : 305 - 311
  • [10] Secure, privacy-preserving and federated machine learning in medical imaging
    Kaissis, Georgios A.
    Makowski, Marcus R.
    Ruckert, Daniel
    Braren, Rickmer F.
    NATURE MACHINE INTELLIGENCE, 2020, 2 (06) : 305 - 311