Hydrogen bond crosslinking hydrogel for high-performance ultra-low temperature MXene-based solid state supercapacitors

被引:4
作者
Xu, Huajun [1 ,2 ]
Liu, Xintong [2 ]
Ma, Guanyu [2 ]
Dong, Honglei [2 ]
Zhao, Zhenxuan [2 ]
Chen, Gang [2 ,3 ]
Gao, Yu [1 ,2 ]
机构
[1] Changchun Coll Elect Technol, Changchun 130114, Peoples R China
[2] Jilin Univ, Coll Phys, Key Lab Phys & Technol Adv Batteries, Minist Educ, Changchun 130012, Peoples R China
[3] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen bond; MXene; Low-temperature; Hydrogel; Solid state supercapacitors; MICRO-SUPERCAPACITORS; ENERGY-STORAGE; ON-CHIP; ELECTROLYTE; BATTERIES; LITHIUM;
D O I
10.1016/j.electacta.2024.145065
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical performance of aqueous electrolytes at low temperatures is frequently suboptimal due to their low freezing point (0 degrees C). In this study, we constructed MXene-based ultra-low temperature polyvinyl alcohol/nanocellulose-H2SO4 (PVA/CNF-H2SO4) hydrogel electrolytes utilising hydrogen bonding between water molecules and nanocellulose. The process results in a reduction in the amount of free water present in the hydrogel electrolyte, lowering its freezing point to -77.35 degrees C. PVA/CNF-H2SO4-based solid-state supercapacitors (C7-SSC) demonstrate a capacitance of up to 813 mF cm(-2) at -50 degrees C, exhibiting high-rate performance at low temperatures. The capacitance remains at 45 F g(-1) at a current density of 20 A g(-1). The maximum areal energy and power densities of our C7-SSC achieve 113 mu Wh cm(-2) and 0.4 mu W cm(-2) at -50 degrees C, respectively, surpassing the majority of state-of-the-art devices. This work provides new insights into MXene-based hydrogel manufacturing and expands the range of potential applications for such materials.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance [J].
Beidaghi, Majid ;
Wang, Chunlei .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (21) :4501-4510
[2]   The Boundary of Lithium Plating in Graphite Electrode for Safe Lithium-Ion Batteries [J].
Cai, Wenlong ;
Yan, Chong ;
Yao, Yu-Xing ;
Xu, Lei ;
Chen, Xiao-Ru ;
Huang, Jia-Qi ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (23) :13007-13012
[3]   Low-Tortuous MXene (TiNbC) Accordion Arrays Enabled Fast Ion Diffusion and Charge Transfer in Dendrite-Free Lithium Metal Anodes [J].
Cao, Zhenjiang ;
Chen, Hao ;
Du, Zhiguo ;
Gu, Jianan ;
Zhu, Qi ;
Li, Bin ;
Yang, Shubin .
ADVANCED ENERGY MATERIALS, 2022, 12 (30)
[4]   An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices [J].
Chang, Nana ;
Li, Tianyu ;
Li, Rui ;
Wang, Shengnan ;
Yin, Yanbin ;
Zhang, Huamin ;
Li, Xianfeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3527-3535
[5]   Functional Materials from Nanocellulose: Utilizing Structure-Property Relationships in Bottom-Up Fabrication [J].
De France, Kevin ;
Zeng, Zhihui ;
Wu, Tingting ;
Nystrom, Gustav .
ADVANCED MATERIALS, 2021, 33 (28)
[6]   Hybrid energy storage: the merging of battery and supercapacitor chemistries [J].
Dubal, D. P. ;
Ayyad, O. ;
Ruiz, V. ;
Gomez-Romero, P. .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (07) :1777-1790
[7]   Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage [J].
El-Kady, Maher F. ;
Kaner, Richard B. .
NATURE COMMUNICATIONS, 2013, 4
[8]   Energy Storage in Nanomaterials - Capacitive Pseudocapacitive, or Battery-like? [J].
Gogotsi, Yury ;
Penner, Reginald M. .
ACS NANO, 2018, 12 (03) :2081-2083
[9]   Designing Advanced Lithium-Based Batteries for Low-Temperature Conditions [J].
Gupta, Abhay ;
Manthiram, Arumugam .
ADVANCED ENERGY MATERIALS, 2020, 10 (38)
[10]   A coaxial single fibre supercapacitor for energy storage [J].
Harrison, David ;
Qiu, Fulian ;
Fyson, John ;
Xu, Yanmeng ;
Evans, Peter ;
Southee, Darren .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (29) :12215-12219