Perovskite oxides with Pb at B-site as Li-ion battery anodes

被引:2
作者
Atif, Shahan [1 ]
Chaupatnaik, Anshuman [1 ]
Rao, Ankit [2 ]
Padhy, Abhisek [1 ]
Chintha, Sridivya [1 ]
Nukala, Pavan [2 ]
Fichtner, Maximilian [3 ,4 ]
Barpanda, Prabeer [1 ,3 ,4 ]
机构
[1] Indian Inst Sci, Mat Res Ctr, Faraday Mat Lab FaMaL, Bangalore 560012, India
[2] Indian Inst Sci, Ctr Nano Sci & Engn, Bangalore 560012, India
[3] Helmholtz Inst Ulm HIU, Electrochem Energy Storage, D-89081 Ulm, Germany
[4] Karlsruhe Inst Technol KIT, Inst Nanotechnol, D-76021 Karlsruhe, Germany
关键词
Li-ion batteries; Anodes; Perovskites; Conversion; Alloying; Electron microscopy; LITHIUM-ION; HIGH-CAPACITY; ELECTROCHEMICAL LITHIATION; TIN; STORAGE; ELECTRODES; LEAD; NANOPARTICLES; PERFORMANCE; GRAPHITE;
D O I
10.1016/j.electacta.2024.144838
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Perovskite ceramic oxides (ABO3) have emerged as strong contenders against graphite anodes in non-aqueous metal-ion batteries. Exploring perovskites, we studied lithium insertion in barium lead oxide (BaPbO3) and strontium lead oxide (SrPbO3) perovskites, where lead (Pb4+) occupies the B-site. BaPbO3 and SrPbO3, mass produced by solid-state or solution-combustion route, delivered reversible capacities upto 333 mAh/g and 339 mAh/g corresponding to 4.3 and 4.9 lithium uptake, respectively at room temperature. Among them, BaPbO3 showed stable cycling for 50 cycles. Furthermore, at 50 0C, BaPbO3 delivers a first charge capacity of 382 mAh/g (or 5.6 lithium per formula unit) maintaining excellent stability beyond 50 cycles. Ex situ diffraction and microscopy studies confirm charge storage occurs via initial conversion (PbIV/PbII -> Pb0) followed by reversible (de)alloying (Li-Pb) reaction. These results showcase perovskites as a promising family of Li-ion battery anodes.
引用
收藏
页数:8
相关论文
共 45 条
[1]   Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries [J].
Aurbach, D ;
Nimberger, A ;
Markovsky, B ;
Levi, E ;
Sominski, E ;
Gedanken, A .
CHEMISTRY OF MATERIALS, 2002, 14 (10) :4155-4163
[2]   ELECTROCHEMICAL LITHIATION OF PB3O4 [J].
BARRIGA, C ;
MAFFI, S ;
BICELLI, LP ;
MALITESTA, C .
JOURNAL OF POWER SOURCES, 1991, 34 (04) :353-367
[3]  
Bashir S., 2018, NANOSTRUCTURED MAT N, V4, P517, DOI [10.1007/978-3-662-56364-9_18, DOI 10.1007/978-3-662-56364-9_18]
[4]   Influence of structure and composition upon performance of tin phosphate based negative electrodes for lithium batteries [J].
Behm, M ;
Irvine, JTS .
ELECTROCHIMICA ACTA, 2002, 47 (11) :1727-1738
[5]   Electrochemical properties of Na0.5Bi0.5TiO3 perovskite as an anode material for sodium ion batteries [J].
Bharathi, K. Kamala ;
Moorthy, Brindha ;
Dara, Hanuma Kumar ;
Durai, Lignesh ;
Kim, Do Kyung .
JOURNAL OF MATERIALS SCIENCE, 2019, 54 (20) :13236-13246
[6]   Perovskite lead-based oxide anodes for rechargeable batteries [J].
Chaupatnaik, Anshuman ;
Barpanda, Prabeer .
ELECTROCHEMISTRY COMMUNICATIONS, 2021, 127
[7]   Li(V0.5Ti0.5)S2 as a 1V lithium intercalation electrode [J].
Clark, Steve J. ;
Wang, Da ;
Armstrong, A. Robert ;
Bruce, Peter G. .
NATURE COMMUNICATIONS, 2016, 7
[8]   Novel tin oxide spinel-based anodes for Li-ion batteries [J].
Conner, PA ;
Irvine, JTS .
JOURNAL OF POWER SOURCES, 2001, 97-8 :223-225
[9]   On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium [J].
Courtney, IA ;
McKinnon, WR ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (01) :59-68
[10]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052