Development and application of data-driven CHF model in system analysis code

被引:0
|
作者
Qiu, Zhifang [1 ,2 ]
Ma, Yichao [3 ]
Huang, Tao [1 ,2 ]
Deng, Jian [1 ,2 ]
Kong, Dexiang [3 ]
Wu, Dan [1 ,2 ]
Zhang, Jing [3 ]
机构
[1] State Key Lab Adv Nucl Energy Technol, Dalian, Peoples R China
[2] Nucl Power Inst China, Chengdu 610041, Peoples R China
[3] Xi An Jiao Tong Univ, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Data-driven; Back-Propagation Neural Network (BPNN); Random Forest (RF); Physics-informed Machine Learning (PIML); CHF model; ARSAC; CRITICAL HEAT-FLUX; PREDICTION; BURNOUT;
D O I
10.1016/j.nucengdes.2024.113488
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In nuclear reactor systems, when the fuel rods reach the critical heat flux (CHF), a sharp increase in fuel temperature occurs due to a drastic reduction in heat transfer capacity, thus posing a considerable risk to the reactor's safety. Consequently, accurate CHF prediction holds paramount importance in accurately simulating accident scenarios and enhancing the overall safety of reactor systems. To tackle the challenge of limited prediction accuracy in existing CHF models, this study initially established a comprehensive database by utilizing available experimental data and lookup tables. Subsequently, various methodologies, including the Back Propagation Neural Network (BPNN), Random Forest (RF), and Physics-Informed Machine Learning (PIML), were employed to develop multiple CHF prediction models, and their performance was thoroughly evaluated. Furthermore, the optimal CHF model was integrated into the self-developed analysis code ARSAC, which was then validated using the ORNL-THTF experiment. The results indicated that the BPNN-based model not only demonstrated exceptional prediction accuracy but also exhibited rapid calculation speeds. Notably, the average relative error between the experimental data points and the calculation results of the modified code is 3.64%, while for the original code, it is 22.84%. This study effectively leverages the strengths of data-driven approaches, providing a robust technical solution for high-precision, efficient, and adaptive numerical prediction and analysis of reactor accidents.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] DialogStudio: A workbench for data-driven spoken dialog system development and management
    Jung, Sangkeun
    Lee, Cheongjae
    Kim, Seokhwan
    Lee, Gary Geunbae
    SPEECH COMMUNICATION, 2008, 50 (8-9) : 697 - 715
  • [22] Data-Driven Fault Detection for Nonlinear System: the Implicit Model Approach
    Chen Zhaoxu
    Fang Huajing
    Ke Zhiwu
    Tao Mo
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 7500 - 7506
  • [23] Research and Application of a Data-driven Platform for Sustainable Development of Energy, Economy and Environment
    Wang Xiuquan
    Shen Xiaoliu
    Tan Zhongfu
    Yang Jingjing
    Zhou Ninghui
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON ENVIRONMENTAL AND COMPUTER SCIENCE, 2009, : 37 - +
  • [24] Model for Data Analysis Process and Its Relationship to the Hypothesis-Driven and Data-Driven Research Approaches
    Matsumuro, Miki
    Miwa, Kazuhisa
    INTELLIGENT TUTORING SYSTEMS (ITS 2019), 2019, 11528 : 123 - 132
  • [25] The Application of Cyber Physical System for Thermal Power Plants: Data-Driven Modeling
    Yang, Yongping
    Li, Xiaoen
    Yang, Zhiping
    Wei, Qing
    Wang, Ningling
    Wang, Ligang
    ENERGIES, 2018, 11 (04)
  • [26] ADD: Application and Data-Driven Controller Design
    Lin, Yikai
    Shao, Yuru
    Zhu, Xiao
    Guo, Junpeng
    Barton, Kira
    Mao, Z. Morley
    SOSR '19: PROCEEDINGS OF THE 2019 ACM SYMPOSIUM ON SDN RESEARCH, 2019, : 84 - 90
  • [27] Reliability Optimization for the Powertrain Mounting System Based on Probability Model and Data-Driven Model
    Lü H.
    Zhang J.
    Huang X.
    Shangguan W.
    Qiche Gongcheng/Automotive Engineering, 2024, 46 (03): : 456 - 463and488
  • [28] Multiscale constitutive model using data-driven yield function
    Park, Hyungbum
    Cho, Maenghyo
    COMPOSITES PART B-ENGINEERING, 2021, 216
  • [29] Data-driven Research Method For Power System Stability Detection
    Jia Tianxia
    Gu Zhuoyuan
    Sun Huadong
    Gao Pengfei
    Yi Jun
    Xu Shiyun
    Zhao Bing
    2018 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2018, : 3061 - 3069
  • [30] Hyperspectral Image Denoising: From Model-Driven, Data-Driven, to Model-Data-Driven
    Zhang, Qiang
    Zheng, Yaming
    Yuan, Qiangqiang
    Song, Meiping
    Yu, Haoyang
    Xiao, Yi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 13143 - 13163