A Survey on Neuromorphic Architectures for Running Artificial Intelligence Algorithms

被引:7
作者
Wahid, Seham Al Abdul [1 ]
Asad, Arghavan [1 ]
Mohammadi, Farah [1 ]
机构
[1] Toronto Metropolitan Univ, Elect & Comp Engn Dept, 350 Victoria St, Toronto, ON M5B 2K3, Canada
关键词
neuromorphic computing architecture; neuromorphic computing learning; spiking neural networks; non-Von Neumann computer; brain-inspired chip; artificial intelligence; machine learning;
D O I
10.3390/electronics13152963
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Neuromorphic computing, a brain-inspired non-Von Neumann computing system, addresses the challenges posed by the Moore's law memory wall phenomenon. It has the capability to enhance performance while maintaining power efficiency. Neuromorphic chip architecture requirements vary depending on the application and optimising it for large-scale applications remains a challenge. Neuromorphic chips are programmed using spiking neural networks which provide them with important properties such as parallelism, asynchronism, and on-device learning. Widely used spiking neuron models include the Hodgkin-Huxley Model, Izhikevich model, integrate-and-fire model, and spike response model. Hardware implementation platforms of the chip follow three approaches: analogue, digital, or a combination of both. Each platform can be implemented using various memory topologies which interconnect with the learning mechanism. Current neuromorphic computing systems typically use the unsupervised learning spike timing-dependent plasticity algorithms. However, algorithms such as voltage-dependent synaptic plasticity have the potential to enhance performance. This review summarises the potential neuromorphic chip architecture specifications and highlights which applications they are suitable for.
引用
收藏
页数:15
相关论文
共 39 条
[1]  
Agebure M. A., 2021, Asian Journal of Research in Computer Science, V9, P35
[2]  
Arikpo I. I., 2008, GLOB J MATH SCI, V6, P97, DOI DOI 10.4314/GJMAS.V6I2.21415
[3]  
Asad A., 2022, Lecture Notes in Networks and Systems, P227, DOI [10.1007/978-3-031-18344-714, DOI 10.1007/978-3-031-18344-714]
[4]   A Survey on Memory Subsystems for Deep Neural Network Accelerators [J].
Asad, Arghavan ;
Kaur, Rupinder ;
Mohammadi, Farah .
FUTURE INTERNET, 2022, 14 (05)
[5]  
Bartolozzi C, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28487-2
[6]   Recent Advances in Synaptic Nonvolatile Memory Devices and Compensating Architectural and Algorithmic Methods Toward Fully Integrated Neuromorphic Chips [J].
Byun, Kanghyeon ;
Choi, Inhyuk ;
Kwon, Soonwan ;
Kim, Younghoon ;
Kang, Donghoon ;
Cho, Young Woon ;
Yoon, Seung Keun ;
Kim, Sangbum .
ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (20)
[7]   A 4096-Neuron 1M-Synapse 3.8-pJ/SOP Spiking Neural Network With On-Chip STDP Learning and Sparse Weights in 10-nm FinFET CMOS [J].
Chen, Gregory K. ;
Kumar, Raghavan ;
Sumbul, H. Ekin ;
Knag, Phil C. ;
Krishnamurthy, Ram K. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (04) :992-1002
[8]   2022 roadmap on neuromorphic computing and engineering [J].
Christensen, Dennis, V ;
Dittmann, Regina ;
Linares-Barranco, Bernabe ;
Sebastian, Abu ;
Le Gallo, Manuel ;
Redaelli, Andrea ;
Slesazeck, Stefan ;
Mikolajick, Thomas ;
Spiga, Sabina ;
Menzel, Stephan ;
Valov, Ilia ;
Milano, Gianluca ;
Ricciardi, Carlo ;
Liang, Shi-Jun ;
Miao, Feng ;
Lanza, Mario ;
Quill, Tyler J. ;
Keene, Scott T. ;
Salleo, Alberto ;
Grollier, Julie ;
Markovic, Danijela ;
Mizrahi, Alice ;
Yao, Peng ;
Yang, J. Joshua ;
Indiveri, Giacomo ;
Strachan, John Paul ;
Datta, Suman ;
Vianello, Elisa ;
Valentian, Alexandre ;
Feldmann, Johannes ;
Li, Xuan ;
Pernice, Wolfram H. P. ;
Bhaskaran, Harish ;
Furber, Steve ;
Neftci, Emre ;
Scherr, Franz ;
Maass, Wolfgang ;
Ramaswamy, Srikanth ;
Tapson, Jonathan ;
Panda, Priyadarshini ;
Kim, Youngeun ;
Tanaka, Gouhei ;
Thorpe, Simon ;
Bartolozzi, Chiara ;
Cleland, Thomas A. ;
Posch, Christoph ;
Liu, Shihchii ;
Panuccio, Gabriella ;
Mahmud, Mufti ;
Mazumder, Arnab Neelim .
NEUROMORPHIC COMPUTING AND ENGINEERING, 2022, 2 (02)
[9]  
Clark K., 2023, P 2023 IEEE 3 INT C, DOI [10.1109/ccai57533.2023.10201289, DOI 10.1109/CCAI57533.2023.10201289]
[10]  
Das Rahul, 2022, 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT), P373, DOI 10.1109/CSNT54456.2022.9787590