A Survey on Neuromorphic Architectures for Running Artificial Intelligence Algorithms

被引:2
作者
Wahid, Seham Al Abdul [1 ]
Asad, Arghavan [1 ]
Mohammadi, Farah [1 ]
机构
[1] Toronto Metropolitan Univ, Elect & Comp Engn Dept, 350 Victoria St, Toronto, ON M5B 2K3, Canada
关键词
neuromorphic computing architecture; neuromorphic computing learning; spiking neural networks; non-Von Neumann computer; brain-inspired chip; artificial intelligence; machine learning;
D O I
10.3390/electronics13152963
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Neuromorphic computing, a brain-inspired non-Von Neumann computing system, addresses the challenges posed by the Moore's law memory wall phenomenon. It has the capability to enhance performance while maintaining power efficiency. Neuromorphic chip architecture requirements vary depending on the application and optimising it for large-scale applications remains a challenge. Neuromorphic chips are programmed using spiking neural networks which provide them with important properties such as parallelism, asynchronism, and on-device learning. Widely used spiking neuron models include the Hodgkin-Huxley Model, Izhikevich model, integrate-and-fire model, and spike response model. Hardware implementation platforms of the chip follow three approaches: analogue, digital, or a combination of both. Each platform can be implemented using various memory topologies which interconnect with the learning mechanism. Current neuromorphic computing systems typically use the unsupervised learning spike timing-dependent plasticity algorithms. However, algorithms such as voltage-dependent synaptic plasticity have the potential to enhance performance. This review summarises the potential neuromorphic chip architecture specifications and highlights which applications they are suitable for.
引用
收藏
页数:15
相关论文
共 39 条
  • [1] Agebure M.A., 2021, ASIAN J RES COMPUTER, V9, P35, DOI 10.9734/ajrcos/2021/v9i430228
  • [2] Arikpo I.I., 2007, GLOB J MATH SCI, V6, P97, DOI DOI 10.4314/GJMAS.V6I2.21415
  • [3] Asad A., 2022, Lecture Notes in Networks and Systems, P227, DOI [10.1007/978-3-031-18344-714, DOI 10.1007/978-3-031-18344-714]
  • [4] A Survey on Memory Subsystems for Deep Neural Network Accelerators
    Asad, Arghavan
    Kaur, Rupinder
    Mohammadi, Farah
    [J]. FUTURE INTERNET, 2022, 14 (05):
  • [5] Bartolozzi C, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28487-2
  • [6] Recent Advances in Synaptic Nonvolatile Memory Devices and Compensating Architectural and Algorithmic Methods Toward Fully Integrated Neuromorphic Chips
    Byun, Kanghyeon
    Choi, Inhyuk
    Kwon, Soonwan
    Kim, Younghoon
    Kang, Donghoon
    Cho, Young Woon
    Yoon, Seung Keun
    Kim, Sangbum
    [J]. ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (20)
  • [7] A 4096-Neuron 1M-Synapse 3.8-pJ/SOP Spiking Neural Network With On-Chip STDP Learning and Sparse Weights in 10-nm FinFET CMOS
    Chen, Gregory K.
    Kumar, Raghavan
    Sumbul, H. Ekin
    Knag, Phil C.
    Krishnamurthy, Ram K.
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (04) : 992 - 1002
  • [8] 2022 roadmap on neuromorphic computing and engineering
    Christensen, Dennis, V
    Dittmann, Regina
    Linares-Barranco, Bernabe
    Sebastian, Abu
    Le Gallo, Manuel
    Redaelli, Andrea
    Slesazeck, Stefan
    Mikolajick, Thomas
    Spiga, Sabina
    Menzel, Stephan
    Valov, Ilia
    Milano, Gianluca
    Ricciardi, Carlo
    Liang, Shi-Jun
    Miao, Feng
    Lanza, Mario
    Quill, Tyler J.
    Keene, Scott T.
    Salleo, Alberto
    Grollier, Julie
    Markovic, Danijela
    Mizrahi, Alice
    Yao, Peng
    Yang, J. Joshua
    Indiveri, Giacomo
    Strachan, John Paul
    Datta, Suman
    Vianello, Elisa
    Valentian, Alexandre
    Feldmann, Johannes
    Li, Xuan
    Pernice, Wolfram H. P.
    Bhaskaran, Harish
    Furber, Steve
    Neftci, Emre
    Scherr, Franz
    Maass, Wolfgang
    Ramaswamy, Srikanth
    Tapson, Jonathan
    Panda, Priyadarshini
    Kim, Youngeun
    Tanaka, Gouhei
    Thorpe, Simon
    Bartolozzi, Chiara
    Cleland, Thomas A.
    Posch, Christoph
    Liu, Shihchii
    Panuccio, Gabriella
    Mahmud, Mufti
    Mazumder, Arnab Neelim
    [J]. NEUROMORPHIC COMPUTING AND ENGINEERING, 2022, 2 (02):
  • [9] Clark K., 2023, P 2023 IEEE 3 INT C, DOI [10.1109/ccai57533.2023.10201289, DOI 10.1109/CCAI57533.2023.10201289]
  • [10] Das Rahul, 2022, 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT), P373, DOI 10.1109/CSNT54456.2022.9787590