Radio U-Net: a convolutional neural network to detect diffuse radio sources in galaxy clusters and beyond

被引:1
作者
Stuardi, C. [1 ]
Gheller, C. [1 ]
Vazza, F. [1 ,2 ,3 ]
Botteon, A. [1 ]
机构
[1] INAF, Ist Radio Astron, Via P Gobetti 101, I-40129 Bologna, Italy
[2] Univ Bologna, Dipartimento Fis & Astron, Via P Gobetti 93-2, I-40129 Bologna, Italy
[3] Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany
关键词
techniques: image processing; galaxies: clusters: intracluster medium; software: data analysis; PARTICLE-ACCELERATION; MAGNETIC-FIELDS; COSMIC WEB; X-RAY; DEEP; CLASSIFICATION; LOFAR; EMISSION; REACCELERATION; SEGMENTATION;
D O I
10.1093/mnras/stae2014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The forthcoming generation of radio telescope arrays promises significant advancements in sensitivity and resolution, enabling the identification and characterization of many new faint and diffuse radio sources. Conventional manual cataloguing methodologies are anticipated to be insufficient to exploit the capabilities of new radio surveys. Radio interferometric images of diffuse sources present a challenge for image segmentation tasks due to noise, artifacts, and embedded radio sources. In response to these challenges, we introduce Radio U-Net, a fully convolutional neural network based on the U-Net architecture. Radio U-Net is designed to detect faint and extended sources in radio surveys, such as radio haloes, relics, and cosmic web filaments. Radio U-Net was trained on synthetic radio observations built upon cosmological simulations and then tested on a sample of galaxy clusters, where the detection of cluster diffuse radio sources relied on customized data reduction and visual inspection of Low-Frequency Array Two metre Sky Survey (LoTSS) data. The 83 per cent of clusters exhibiting diffuse radio emission were accurately identified, and the segmentation successfully recovered the morphology of the sources even in low-quality images. In a test sample comprising 246 galaxy clusters, we achieved a 73 per cent accuracy rate in distinguishing between clusters with and without diffuse radio emission. Our results establish the applicability of Radio U-Net to extensive radio survey data sets, probing its efficiency on cutting-edge high-performance computing systems. This approach represents an advancement in optimizing the exploitation of forthcoming large radio surveys for scientific exploration.
引用
收藏
页码:3194 / 3208
页数:15
相关论文
共 50 条
[21]   Analysis on grading of lung nodule images with segmentation using u-net and classification with Convolutional Neural Network Fish Swarm Optimization [J].
Sudha, R. ;
Maheswari, K. M. Uma .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2025, 45 (01) :90-104
[22]   Deep Synoptic Array Science: Two Fast Radio Burst Sources in Massive Galaxy Clusters [J].
Connor, Liam ;
Ravi, Vikram ;
Catha, Morgan ;
Chen, Ge T. ;
Faber, Jakob W. ;
Lamb, James ;
Hallinan, Gregg ;
Harnach, Charlie ;
Hellbourg, Greg ;
Hobbs, Rick ;
Hodge, David ;
Hodges, Mark ;
Law, Casey ;
Rasmussen, Paul ;
Sayers, Jack ;
Sharma, Kritti B. ;
Sherman, Myles ;
Shi, Jun ;
Simard, Dana ;
Somalwar, Jean ;
Squillace, Reynier ;
Weinreb, Sander P. ;
Woody, David ;
Yadlapalli, Nitika .
ASTROPHYSICAL JOURNAL LETTERS, 2023, 949 (02)
[23]   BREAST LESION SEGMENTATION AND CLASSIFICATION USING U-NET SALIENCY ESTIMATION AND EXPLAINABLE RESIDUAL CONVOLUTIONAL NEURAL NETWORK [J].
Fatima, Mamuna ;
Khan, Muhammad attique ;
Shaheen, Saima ;
Albarakati, Hussain mobarak ;
Wang, Shuihua ;
Jilani, Syeda fizzah ;
Shabaz, Mohammad .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024,
[24]   U-Net Neural Network Optimization Method Based on Deconvolution Algorithm [J].
Li, Shen ;
Xu, Junhai ;
Chen, Renhai .
NEURAL INFORMATION PROCESSING, ICONIP 2020, PT I, 2020, 12532 :592-602
[25]   Cochlear CT image segmentation based on u-net neural network [J].
Li, Cheng ;
Li, Xiaojun ;
Zhou, Rong .
JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2023, 16 (02)
[26]   Development of U-net Neural Network for Biomedical Images with Big Data [J].
Zhang, Yameng ;
Wan, Min ;
Tian, Hua ;
Liu, Yangyang ;
Lv, Qian ;
Li, Weitao .
BIG DATA AND SECURITY, ICBDS 2023, PT II, 2024, 2100 :27-39
[27]   Particle re-acceleration and diffuse radio sources in the galaxy cluster Abell 1550 [J].
Pasini, T. ;
Edler, H. W. ;
Brueggen, M. ;
de Gasperin, F. ;
Botteon, A. ;
Rajpurohit, K. ;
van Weeren, R. J. ;
Gastaldello, F. ;
Gaspari, M. ;
Brunetti, G. ;
Cuciti, V. ;
Nanci, C. ;
di Gennaro, G. ;
Rossetti, M. ;
Dallacasa, D. ;
Hoang, D. N. ;
Riseley, C. J. .
ASTRONOMY & ASTROPHYSICS, 2022, 663
[28]   Dual feature extraction based convolutional neural network classifier for magnetic resonance imaging tumor detection using U-Net and three-dimensional convolutional neural network [J].
Kumar, R. Suresh ;
Nagaraj, B. ;
Manimegalai, P. ;
Ajay, P. .
COMPUTERS & ELECTRICAL ENGINEERING, 2022, 101
[29]   Diffuse radio emission from galaxy clusters in the LOFAR Two-metre Sky Survey Deep Fields [J].
Osinga, E. ;
van Weeren, R. J. ;
Boxelaar, J. M. ;
Brunetti, G. ;
Botteon, A. ;
Brueggen, M. ;
Shimwell, T. W. ;
Bonafede, A. ;
Best, P. N. ;
Bonato, M. ;
Cassano, R. ;
Gastaldello, F. ;
di Gennaro, G. ;
Hardcastle, M. J. ;
Mandal, S. ;
Rossetti, M. ;
Roettgering, H. J. A. ;
Sabater, J. ;
Tasse, C. .
ASTRONOMY & ASTROPHYSICS, 2021, 648
[30]   Haemorrhage diagnosis in colour fundus images using a fast-convolutional neural network based on a modified U-Net [J].
Sathiyaseelan, Rathinavelu ;
Ravi, Krishnamoorthy ;
Ramamoorthy, Ramesh ;
Pedda Chennaiah, Mithun .
NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2025, 36 (01) :198-219