Segmenting Medical Images: From UNet to Res-UNet and nnUNet

被引:13
作者
Huang, Lina [1 ]
Miron, Alina [1 ]
Hone, Kate [1 ]
Li, Yongmin [1 ]
机构
[1] Brunel Univ London, Dept Comp Sci, Uxbridge, Middx, England
来源
2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024 | 2024年
关键词
deep learning; UNet; Res-UNet; Attention Res-UNet; nnUNet; medical imaging segmentation; clinical application; SEGMENTATION; HEART; NETWORKS;
D O I
10.1109/CBMS61543.2024.00086
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study provides a comparative analysis of deep learning models UNet, Res-UNet, Attention Res-UNet, and nnUNet evaluating their performance in brain tumour, polyp, and multi-class heart segmentation tasks. The analysis focuses on precision, accuracy, recall, Dice Similarity Coefficient (DSC), and Intersection over Union (IoU) to assess their clinical applicability. In brain tumour segmentation, Res-UNet and nnUNet significantly outperformed UNet, with Res-UNet leading in DSC and loU scores, indicating superior accuracy in tumour delineation. Meanwhile, nnUNet excelled in recall and accuracy, which are crucial for reliable tumour detection in clinical diagnosis and planning. In polyp detection, nnUNet was the most effective, achieving the highest metrics across all categories and proving itself as a reliable diagnostic tool in endoscopy. In the complex task of heart segmentation, Res-UNet and Attention Res-UNet were outstanding in delineating the left ventricle, with Res-UNet also leading in right ventricle segmentation. nnUNet was unmatched in myocardium segmentation, achieving top scores in precision, recall, DSC, and loU. The conclusion notes that although Res-UNet occasionally outperforms nnUNet in specific metrics, the differences are quite small. Moreover, nnUNet consistently shows superior overall performance across the experiments. Particularly noted for its high recall and accuracy, which are crucial in clinical settings to minimize misdiagnosis and ensure timely treatment, nnUNet's robust performance in crucial metrics across all tested categories establishes it as the most effective model for these varied and complex segmentation tasks.
引用
收藏
页码:483 / 489
页数:7
相关论文
共 40 条
[1]  
Akbari M, 2018, IEEE ENG MED BIO, P69, DOI 10.1109/EMBC.2018.8512197
[2]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[3]   Deep Learning for Smart Healthcare-A Survey on Brain Tumor Detection from Medical Imaging [J].
Arabahmadi, Mahsa ;
Farahbakhsh, Reza ;
Rezazadeh, Javad .
SENSORS, 2022, 22 (05)
[4]   Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results From the MICCAI 2015 Endoscopic Vision Challenge [J].
Bernal, Jorge ;
Tajkbaksh, Nima ;
Sanchez, Francisco Javier ;
Matuszewski, Bogdan J. ;
Chen, Hao ;
Yu, Lequan ;
Angermann, Quentin ;
Romain, Olivier ;
Rustad, Bjorn ;
Balasingham, Ilangko ;
Pogorelov, Konstantin ;
Choi, Sungbin ;
Debard, Quentin ;
Maier-Hein, Lena ;
Speidel, Stefanie ;
Stoyanov, Danail ;
Brandao, Patrick ;
Cordova, Henry ;
Sanchez-Montes, Cristina ;
Gurudu, Suryakanth R. ;
Fernandez-Esparrach, Gloria ;
Dray, Xavier ;
Liang, Jianming ;
Histace, Aymeric .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (06) :1231-1249
[5]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[6]   Deep Learning in Medical Image Analysis [J].
Chan, Heang-Ping ;
Samala, Ravi K. ;
Hadjiiski, Lubomir M. ;
Zhou, Chuan .
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS: CHALLENGES AND APPLICATIONS, 2020, 1213 :3-21
[7]   Deep Learning for Cardiac Image Segmentation: A Review [J].
Chen, Chen ;
Qin, Chen ;
Qiu, Huaqi ;
Tarroni, Giacomo ;
Duan, Jinming ;
Bai, Wenjia ;
Rueckert, Daniel .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
[8]   MRI Segmentation of the Human Brain: Challenges, Methods, and Applications [J].
Despotovic, Ivana ;
Goossens, Bart ;
Philips, Wilfried .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015, 2015
[9]  
Dodo B., 2018, INT C BIOIM
[10]   Retinal Layer Segmentation in Optical Coherence Tomography Images [J].
Dodo, Bashir Isa ;
Li, Yongmin ;
Kaba, Djibril ;
Liu, Xiaohui .
IEEE ACCESS, 2019, 7 :152388-152398