Bohr phenomenon for certain subclass of harmonic mappings

被引:0
作者
Meher, Akash [1 ]
Gochhayat, Priyabrat [1 ]
机构
[1] Sambalpur Univ, Dept Math, Sambalpur 768019, Odisha, India
关键词
Bohr radius; Improved Bohr radius; Bohr-Rogosinski radius; Area bounds; ANALYTIC-FUNCTIONS; SECTIONS; SUBORDINATION; CONVEXITY; FAMILIES; SERIES; RADIUS;
D O I
10.1007/s41478-024-00812-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a subclass of univalent harmonic mappings, denoted by T-H(alpha, gamma, beta), which is harmonic analogue to the class W-beta(alpha, gamma) due to Ali et al. (J Math Anal Appl 385(2):808-822, 2012), where alpha and gamma are non-negative real numbers and 0 <= beta <1. We first compute the Bohr radius, improved Bohr radius and Bohr-Rogosinski radius for the family T-H(alpha, gamma, beta). Moreover, by making use of area and Jacobian bounds, various Bohr-type inequalities are also established. In particular, we present the Bohr phenomenon for various classical subfamilies of harmonic univalent mappings and also point out the relevant connections with the known results.
引用
收藏
页码:3421 / 3451
页数:31
相关论文
共 48 条
  • [1] Bohr's phenomenon for analytic functions into the exterior of a compact convex body
    Abu Muhanna, Y.
    Ali, Rosihan M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) : 512 - 517
  • [2] Bohr's phenomenon for analytic functions and the hyperbolic metric
    Abu Muhanna, Yusuf
    Ali, Rosihan M.
    [J]. MATHEMATISCHE NACHRICHTEN, 2013, 286 (11-12) : 1059 - 1065
  • [3] Bohr's phenomenon in subordination and bounded harmonic classes
    Abu Muhanna, Yusuf
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (11) : 1071 - 1078
  • [4] Abu-Muhanna Y., 2018, J ANAL-INDIA, V26, P135, DOI [10.1007/s41478-018-0075-8, DOI 10.1007/S41478-018-0075-8]
  • [5] Abu-Muhanna Y., 2016, Springer Optim Appl, V117, P265
  • [6] BOHR PHENOMENON FOR CERTAIN CLASSES OF HARMONIC MAPPINGS
    Ahamed, Molla Basir
    Allu, Vasudevarao
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (04) : 1205 - 1225
  • [7] Bohr radius for certain classes of close-to-convex harmonic mappings
    Ahamed, Molla Basir
    Allu, Vasudevarao
    Halder, Himadri
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
  • [8] Harmonic Maps and Ideal Fluid Flows
    Aleman, A.
    Constantin, A.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (02) : 479 - 513
  • [9] Star likeness of integral transforms and duality
    Ali, Rosihan M.
    Badghaish, Abeer O.
    Ravichandran, V.
    Swaminathan, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (02) : 808 - 822
  • [10] ON THE BOHR INEQUALITY WITH A FIXED ZERO COEFFICIENT
    Alkhaleefah, Seraj A.
    Kayumov, Ilgiz R.
    Ponnusamy, Saminathan
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (12) : 5263 - 5274