Dual-branch collaborative Siamese network for visual tracking

被引:0
作者
Zhou, Wenjun [1 ]
Liu, Yao [1 ]
Wang, Nan [1 ]
Wang, Yifan [1 ]
Peng, Bo [1 ]
机构
[1] Southwest Petr Univ, Sch Comp Sci & Software Engn, Chengdu 610500, Peoples R China
关键词
Attention mechanism; Collaborative Siamese network; Dual-branch structure; Visual object tracking; OBJECT TRACKING;
D O I
10.1016/j.dsp.2024.104716
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a dual-branch collaborative Siamese network architecture, CoSiNet, for visual object tracking. The network has a shallow branch for precise target localization and a deep branch for extracting rich semantic information. It integrates two specialized modules- Channel Attention and Spatial Channel Attention Feature Enhancement- for improved feature extraction and background noise reduction. An Adaptive Fusion Module combines response maps from both branches to create an enriched final response map. Experimental results show our algorithm outperforms several contemporary techniques on four different public datasets (OTB100, OTB50, DTB70, TColor128), demonstrating the competitiveness of CoSiNet.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Bao J., 2023, IEEE Trans. Circuits Syst. Video Technol.
  • [2] Staple: Complementary Learners for Real-Time Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Golodetz, Stuart
    Miksik, Ondrej
    Torr, Philip H. S.
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1401 - 1409
  • [3] Fully-Convolutional Siamese Networks for Object Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Henriques, Joao F.
    Vedaldi, Andrea
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 850 - 865
  • [4] Unveiling the Power of Deep Tracking
    Bhat, Goutam
    Johnander, Joakim
    Danelljan, Martin
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. COMPUTER VISION - ECCV 2018, PT II, 2018, 11206 : 493 - 509
  • [5] Efficient Visual Tracking with Exemplar Transformers
    Blatter, Philippe
    Kanakis, Menelaos
    Danelljan, Martin
    Van Gool, Luc
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 1571 - 1581
  • [6] Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
  • [7] SeqTrack: Sequence to Sequence Learning for Visual Object Tracking
    Chen, Xin
    Peng, Houwen
    Wang, Dong
    Lu, Huchuan
    Hu, Han
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 14572 - 14581
  • [8] ATOM: Accurate Tracking by Overlap Maximization
    Danelljan, Martin
    Bhat, Goutam
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4655 - 4664
  • [9] Learning Spatially Regularized Correlation Filters for Visual Tracking
    Danelljan, Martin
    Hager, Gustav
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4310 - 4318
  • [10] Convolutional Features for Correlation Filter Based Visual Tracking
    Danelljan, Martin
    Hager, Gustav
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 621 - 629