Crystallographic variant mapping using precession electron diffraction data

被引:2
|
作者
Hansen, Marcus H. [1 ]
Wang, Ainiu L. [1 ]
Dong, Jiaqi [1 ]
Zhang, Yuwei [2 ]
Umale, Tejas [1 ]
Banerjee, Sarbajit [1 ,3 ]
Shamberger, Patrick [1 ]
Pharr, Matt [2 ]
Karaman, Ibrahim [1 ]
Xie, Kelvin Y. [1 ]
机构
[1] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
[3] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA
来源
MICROSTRUCTURES | 2023年 / 3卷 / 04期
基金
美国国家科学基金会;
关键词
Crystallographic variant mapping; precession electron diffraction (PED); image similarity quantification; k-means; NI-RICH NITIHF; SHAPE-MEMORY; ORIENTATION; MICROSTRUCTURE; MARTENSITE; TRANSITION;
D O I
10.20517/microstructures.2023.17
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we developed three methods to map crystallographic variants of samples at the nanoscale by analyzing precession electron diffraction data using a high-temperature shape memory alloy and a VO2 thin film on sapphire as the model systems. The three methods are (I) a user-selecting-reference pattern approach, (II) an algorithm-selecting-reference-pattern approach, and (III) a k-means approach. In the first two approaches, Euclidean distance, Cosine, and Structural Similarity (SSIM) algorithms were assessed for the diffraction pattern similarity quantification. We demonstrated that the Euclidean distance and SSIM methods outperform the Cosine algorithm. We further revealed that the random noise in the diffraction data can dramatically affect similarity quantification. Denoising processes could improve the crystallographic mapping quality. With the three methods mentioned above, we were able to map the crystallographic variants in different materials systems, thus enabling fast variant number quantification and clear variant distribution visualization. The advantages and disadvantages of each approach are also discussed. We expect these methods to benefit researchers who work on martensitic materials, in which the variant information is critical to understand their properties and functionalities.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Improving orientation mapping by enhancing the diffraction signal using Auto-CLAHE in precession electron diffraction data
    Wang, Ainiu L.
    Hansen, Marcus H.
    Lai, Yi-Cheng
    Dong, Jiaqi
    Xie, Kelvin Y.
    MICROSTRUCTURES, 2023, 3 (04):
  • [2] A reference-area-free strain mapping method using precession electron diffraction data
    Zhao, Dexin
    Patel, Aniket
    Barbosa, Aaron
    Hansen, Marcus H.
    Wang, Ainiu L.
    Dong, Jiaqi
    Zhang, Yuwei
    Umale, Tejas
    Karaman, Ibrahim
    Shamberger, Patrick
    Banerjee, Sarbajit
    Pharr, Matt
    Xie, Kelvin Y.
    ULTRAMICROSCOPY, 2023, 247
  • [3] Crystallographic information data of natural occurring zaccariniite (RhNiAs) obtained by means of precession electron diffraction
    Roque Rosell, Josep
    Portillo Serra, Joaquim
    Hans Aiglsperger, Thomas
    Plana-Ruiz, Sergi
    Pratim Das, Partha
    Mendoza Gonzalvez, Joan
    Trifonov, Trifon
    Antonio Proenza, Joaquin
    DATA IN BRIEF, 2019, 25
  • [4] Full structure solution of aluminides using precession electron diffraction data
    Meshi, Louisa
    Krimer, Yakov
    Samuha, Shmuel
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C692 - C692
  • [5] Precession Electron Diffraction assisted Orientation Mapping in the Transmission Electron Microscope
    Portillo, Joaquim
    Rauch, Edgar F.
    Nicolopoulos, Stavros
    Gemmi, Mauro
    Bultreys, Daniel
    ADVANCED ELECTRON MICROSCOPY AND NANOMATERIALS, 2010, 644 : 1 - +
  • [6] Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data
    Palatinus, Lukas
    Correa, Cinthia Antunes
    Steciuk, Gwladys
    Jacob, Damien
    Roussel, Pascal
    Boullay, Philippe
    Klementova, Mariana
    Gemmi, Mauro
    Kopecek, Jaromir
    Domeneghetti, M. Chiara
    Camara, Fernando
    Petricek, Vaclav
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2015, 71 : 740 - 751
  • [7] Scanning precession electron diffraction data analysis approaches for phase mapping of precipitates in aluminium alloys
    Thronsen, E.
    Bergh, T.
    Thorsen, T. I.
    Christiansen, E. F.
    Frafjord, J.
    Crout, P.
    van Helvoort, A. T. J.
    Midgley, P. A.
    Holmestad, R.
    ULTRAMICROSCOPY, 2024, 255
  • [8] Scanning precession electron diffraction data analysis approaches for phase mapping of precipitates in aluminium alloys
    Thronsen, E.
    Bergh, T.
    Thorsen, T.I.
    Christiansen, E.F.
    Frafjord, J.
    Crout, P.
    van Helvoort, A.T.J.
    Midgley, P.A.
    Holmestad, R.
    Ultramicroscopy, 2024, 255
  • [9] Strain mapping at the nanoscale using precession electron diffraction in transmission electron microscope with off axis camera
    Vigouroux, M. P.
    Delaye, V.
    Bernier, N.
    Cipro, R.
    Lafond, D.
    Audoit, G.
    Baron, T.
    Rouviere, J. L.
    Martin, M.
    Chenevier, B.
    Bertin, F.
    APPLIED PHYSICS LETTERS, 2014, 105 (19)
  • [10] The benefits of Scanning Precession Electron Diffraction to access to the crystallographic phases and orientations of nanomaterials
    Rauch, Edgar F.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C29 - C29