Discovering and Visualizing Tactics in a Table Tennis Game Based on Subgroup Discovery

被引:3
作者
Duluard, Pierre [1 ]
Li, Xinqing [2 ]
Plantevit, Marc [3 ]
Robardet, Celine [2 ]
Vuillemot, Romain [1 ]
机构
[1] Univ Lyon 2, UMR5205, LIRIS, Univ Lyon,Cent Lyon,CNRS,INSA Lyon,UCBL, F-69130 Ecully, France
[2] Univ Lyon, CNRS, INSA Lyon, UCBL,LIRIS,UMR5205, F-69621 Villeurbanne, France
[3] Lab Rech EPITA LRE, F-94276 Paris, France
来源
MACHINE LEARNING AND DATA MINING FOR SPORTS ANALYTICS, MLSA 2022 | 2023年 / 1783卷
关键词
Data mining; Sports data visualization; Table tennis;
D O I
10.1007/978-3-031-27527-2_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We report preliminary results to automatically identify effective tactics of elite table tennis players. We define these tactics as subgroups of winning strokes that table tennis experts seek to identify in order to train players and adapt their strategy during play. We first report how we identify and classify these subgroups using the weighted relative accuracy measure (WRAcc). We then present the subgroups using visualizations to communicate these results to our expert. These exchanges allow rapid feedback on our results and makes it possible further improvements to our discoveries.
引用
收藏
页码:101 / 112
页数:12
相关论文
共 9 条
[1]   Subgroup discovery [J].
Atzmueller, Martin .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2015, 5 (01) :35-49
[2]   Automatic Discovery of Tactics in Spatio-Temporal Soccer Match Data [J].
Decroos, Tom ;
Van Haaren, Jan ;
Davis, Jesse .
KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, :223-232
[3]  
Fournier-Viger Philippe, 2014, Advances in Knowledge Discovery and Data Mining. 18th Pacific-Asia Conference (PAKDD 2014). Proceedings: LNCS 8443, P40, DOI 10.1007/978-3-319-06608-0_4
[4]   SeqScout: Using a Bandit Model to Discover Interesting Subgroups in Labeled Sequences [J].
Mathonat, Romain ;
Nurbakova, Diana ;
Boulicaut, Jean-Francois ;
Kaytoue, Mehdi .
2019 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2019), 2019, :81-90
[5]  
Muller M., 2007, Information retrieval for music and motion, P69, DOI [10.1007/978-3-540-74048-34, DOI 10.1007/978-3-540-74048-3_4]
[6]  
Novak PK, 2009, J MACH LEARN RES, V10, P377
[7]   Tac-Miner: Visual Tactic Mining for Multiple Table Tennis Matches [J].
Wang, Jiachen ;
Wu, Jiang ;
Cao, Anqi ;
Zhou, Zheng ;
Zhang, Hui ;
Wu, Yingcai .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (06) :2770-2782
[8]   Tac-Simur: Tactic-based Simulative Visual Analytics of Table Tennis [J].
Wang, Jiachen ;
Zhao, Kejian ;
Deng, Dazhen ;
Cao, Anqi ;
Xie, Xiao ;
Zhou, Zheng ;
Zhang, Hui ;
Wu, Yingcai .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (01) :407-417
[9]   iTTVis: Interactive Visualization of Table Tennis Data [J].
Wu, Yingcai ;
Lan, Ji ;
Shu, Xinhuan ;
Ji, Chenyang ;
Zhao, Kejian ;
Wang, Jiachen ;
Zhang, Hui .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (01) :709-718