Orbital angular momentum study of a Laguerre-Gauss vortex beam in finite-amplitude acoustic wave perturbed atmospheric turbulence

被引:0
作者
Zhang, Jialin [1 ]
Wang, Mingjun [1 ,2 ]
Wu, Xiaohu [3 ]
机构
[1] Xian Univ Technol, Sch Automat & Informat Engn, Xian 710048, Shaanxi, Peoples R China
[2] Shaanxi Univ Technol, Sch Phys & Telecommun Engn, Hanzhong 723001, Shaanxi, Peoples R China
[3] Shandong Inst Adv Technol, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
PROPAGATION; LIGHT;
D O I
10.1364/OE.528154
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The paper establishes a transmission model for Laguer re-Gaussian vortex beams in atmospheric turbulence that is affected by finite-amplitude acoustic waves (i.e. non-linear acoustic waves). This study examines the variations in the orbital angular momentum (OAM) properties of the Laguer re-Gaussian vortex beam in atmospheric turbulence disrupted by finiteamplitude acoustic waves. It also explores the effects of source parameters, namely acoustic pressure amplitude and acoustic frequency, on the spiral spectrum and detection probability. The results indicate that the impact of finite-amplitude acoustic waves on the OAM properties of the Laguer re-Gaussian vortex beam varies depending on the distance of acoustic wave transmission. Moreover, the effects on the OAM characteristics of the Laguer re-Gaussian vortex beam become more pronounced with higher acoustic pressure amplitude and frequency. The acoustic pressure amplitude solely impacts the extent of variation in the atmospheric refractive index structure constant, while the acoustic frequency is associated not only with the extent of variation in the atmospheric refractive index structure constant but also with the distribution of the atmospheric refractive index structure constant. Hence, the OAM properties of the Laguer re-Gaussian vortex beam can be intentionally modified by employing various acoustic source models.
引用
收藏
页码:32146 / 32159
页数:14
相关论文
共 22 条
[11]   EFFECTS OF SOUND-LIGHT INTERACTION ON PARTIAL COHERENCE IN IMAGE-FORMING OPTICAL SYSTEMS [J].
OHTSUKA, Y .
OPTICS COMMUNICATIONS, 1976, 17 (03) :238-241
[12]  
QIAN ZW, 1990, CHINESE PHYS LETT, V7, P72, DOI 10.1088/0256-307X/7/2/007
[13]  
Shcherbakov AS, 2013, J OPT SOC AM B, V30, P3174, DOI [10.1364/JOSAB.30.083174, 10.1364/JOSAB.30.003174]
[14]  
Tatarski, 1978, WAVE PROPAGATION TUR, P51
[15]  
Tonning A, 1957, Applied Scientific Research: Section B, V6, P401
[16]   Analysis of influence of acoustic wave disturbance on internal and external scale and refractive index power spectrum function of turbulence [J].
Wang Ming-Jun ;
Xi Jian-Xia ;
Wang Wan-Rou ;
Li Yong-Jun ;
Zhang Jia-Lin .
ACTA PHYSICA SINICA, 2023, 72 (12)
[17]   Phase regulation of lightwave transmission in inhomogeneous atmospheric medium using plane acoustic field [J].
Wang Ming-Jun ;
Wang Wan-Rou ;
Li Yong-Jun .
ACTA PHYSICA SINICA, 2022, 71 (16)
[18]   Effect of Point-Array Coherent Sound Source on Scintillation Index of Light Wave in Atmospheric Turbulence Transmission [J].
Wang Wenjing ;
Wang Mingjun .
LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (01)
[19]   Spiral spectrum of a Laguerre-Gaussian beam propagating in anisotropic non-Kolmogorov turbulent atmosphere along horizontal path [J].
Zeng, Jun ;
Liu, Xianlong ;
Zhao, Chengliang ;
Wang, Fei ;
Gbur, Greg ;
Cai, Yangjian .
OPTICS EXPRESS, 2019, 27 (18) :25342-25356
[20]   Phase variation of Laguerre-Gaussian vortex beams in a homogeneous atmospheric medium under finite amplitude acoustic wave perturbation [J].
Zhang, Jialin ;
Wang, Mingjun ;
Wang, Wanrou ;
Huang, Chaojun .
PHYSICA SCRIPTA, 2024, 99 (01)